首页> 外文OA文献 >Penalized likelihood estimation and iterative kalman smoothing for non-gaussian dynamic regression models
【2h】

Penalized likelihood estimation and iterative kalman smoothing for non-gaussian dynamic regression models

机译:非高斯动态回归模型的惩罚似然估计和迭代卡尔曼平滑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dynamic regression or state space models provide a flexible framework for analyzing non-Gaussian time series and longitudinal data, covering for example models for discrete longitudinal observations. As for non-Gaussian random coefficient models, a direct Bayesian approach leads to numerical integration problems, often intractable for more complicated data sets. Recent Markov chain Monte Carlo methods avoid this by repeated sampling from approximative posterior distributions, but there are still open questions about sampling schemes and convergence. In this article we consider simpler methods of inference based on posterior modes or, equivalently, maximum penalized likelihood estimation. From the latter point of view, the approach can also be interpreted as a nonparametric method for smoothing time-varying coefficients. Efficient smoothing algorithms are obtained by iteration of common linear Kalman filtering and smoothing, in the same way as estimation in generalized linear models with fixed effects can be performed by iteratively weighted least squares estimation. The algorithm can be combined with an EM-type method or cross-validation to estimate unknown hyper- or smoothing parameters. The approach is illustrated by applications to a binary time series and a multicategorical longitudinal data set.
机译:动态回归或状态空间模型为分析非高斯时间序列和纵向数据提供了灵活的框架,例如涵盖了离散纵向观测的模型。对于非高斯随机系数模型,直接的贝叶斯方法会导致数值积分问题,对于更复杂的数据集通常很难解决。最近的马尔可夫链蒙特卡洛方法通过从近似后验分布中进行重复采样来避免这种情况,但是关于采样方案和收敛性仍然存在未解决的问题。在本文中,我们考虑了基于后验模式或等效地最大惩罚似然估计的更简单的推理方法。从后一种观点来看,该方法也可以解释为用于平滑随时间变化的系数的非参数方法。通过普通线性卡尔曼滤波和平滑处理的迭代可以获得高效的平滑算法,与通过迭代加权最小二乘估计可以执行具有固定效果的广义线性模型中的估计相同。该算法可以与EM型方法或交叉验证相结合,以估计未知的超或平滑参数。通过对二进制时间序列和多分类纵向数据集的应用说明了该方法。

著录项

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号