首页> 外文OA文献 >An Iterative Ensemble Kalman Filter with One-Step-Ahead Smoothing for State-Parameters Estimation of Contaminant Transport Models
【2h】

An Iterative Ensemble Kalman Filter with One-Step-Ahead Smoothing for State-Parameters Estimation of Contaminant Transport Models

机译:具有一步一步平滑的迭代集成卡尔曼滤波器,用于污染物传输模型的状态参数估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ensemble Kalman filter (EnKF) is a popular method for state-parameters estimation of subsurface flow and transport models based on field measurements. The common filtering procedure is to directly update the state and parameters as one single vector, which is known as the Joint-EnKF. In this study, we follow the one-step-ahead smoothing formulation of the filtering problem, to derive a new joint-based EnKF which involves a smoothing step of the state between two successive analysis steps. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. This new algorithm bears strong resemblance with the Dual-EnKF, but unlike the latter which first propagates the state with the model then updates it with the new observation, the proposed scheme starts by an update step, followed by a model integration step. We exploit this new formulation of the joint filtering problem and propose an efficient model-integration-free iterative procedure on the update step of the parameters only for further improved performances.ududNumerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter’s behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model integrations than the standard Joint-EnKF.
机译:集成卡尔曼滤波器(EnKF)是一种流行的方法,用于基于现场测量的地下流和传输模型的状态参数估计。常见的过滤过程是直接将状态和参数更新为一个矢量,称为联合EnKF。在这项研究中,我们遵循过滤问题的一步一步平滑公式,以得出一个新的基于联合的EnKF,其中涉及两个连续分析步骤之间状态的平滑步骤。新的状态参数估计方案是在一致的贝叶斯过滤框架中得出的,并导致状态和参数的更新步骤分开。该新算法与Dual-EnKF非常相似,但是与后者先通过模型传播状态然后通过新观测值对其进行更新的方法不同,该方案从更新步骤开始,然后是模型集成步骤。我们利用联合过滤问题的这一新公式,并针对参数的更新步骤提出了一种有效的无模型积分迭代程序,仅用于进一步改善性能。 ud ud使用二维合成地下传输模型进行了数值实验模拟污染物羽流在异质含水层域中的迁移。污染物浓度数据被同化,以估计污染物状态和水力传导率场。同化运行是在不完善的建模条件和各种观察方案下进行的。仿真结果表明,所提出的方案可以有效地恢复污染物状态和含水层电导率,在所有测试情况下均比标准的联合和双重EnKF提供更准确的估计。在新方案的更新步骤上进行迭代可以进一步增强建议的过滤器的行为。在计算成本方面,新的Joint-EnKF几乎等同于Dual-EnKF,但与标准的Joint-EnKF相比,其模型集成要多两倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号