首页> 外文OA文献 >Surface tension assisted lithography (STAL): a novel microfabrication techniques for microfluidics
【2h】

Surface tension assisted lithography (STAL): a novel microfabrication techniques for microfluidics

机译:表面张力辅助光刻(sTaL):一种用于微流体的新型微加工技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many fundamental fields of research have highly advanced in the last three decades due to the unprecedented precision and complexity enabled by the microfabrication technology. Fabrication of 3D microstructures such as simple spherical and cylindrical shapes is highly desired to accurately mimic the natural phenomena in a research environment. Surprisingly, 3D microstructures are commonly avoided if devices are to be realised using typical, planar microfabrication methods due to the limited capabilities of producing 3D structures. In fact, photolithography, the traditional and the most common method for mass-production of microfabricated systems, allows definition of almost arbitrarily complex shapes on planar surfaces, but has limited capability of producing 3D structures. Several other non-planar microfabrication techniques have been reported such as direct laser writing, inclined UV lithography, and the surface wrinkling. However, none can be considered as a true contender to the photolithography, due to the fact that each of them is subject to some combination of the following problems: costly infrastructure, long write times, poor feature addressing, poor resolution, and lack of control. This thesis explores the potential of utilising surface tension driven techniques for 3D microfabrications. The surface tension driven techniques appear promising, due to the key advantages namely, exceptionally smooth surface, cost effectiveness, and self alignment properties. Until now, little attention has been given to the surface tension driven techniques. The major contributions of this thesis include introducing, characterising, and implementing of the novel Surface Tension Assisted Lithography (STAL) technique for 3D microfabrication technique. STAL consists of a sequence of the following steps: soft lithography physically patterns the polymer, then UV exposure defines the reflow container, then a thermal treatment solidifies the container and reflows the unexposed region of the polymer, and finally an exposure ensures that the reflowed structures retain their shape. It is shown that STAL provides independent control over the height and diameter of the semi-spherical structures. There are many possible applications for 3D structures, even in the form of simple spherical caps. One of the applications of semi-spherical structures is demonstrated by fabricating novel semi-spherical microelectrodes for dielectrophoretic manipulation cells. Advantages of semi-spherical microelectrodes over 2D configurations are demonstrated through a series of experiments and numerical simulations. The potential of STAL to produce more complicated systems such as hybrid structures with planar posts integrated into STAL structures is also explored. A simplified model has been developed to predict the defection of the posts under surface tension. In the closing chapter of this thesis, the opportunities to extend STAL for producing more complex 3D structures are identified. Fabrication of convex 3D features with complex containers in the scale of conventional microfluidic structures is investigated. And also, the concept of patterning STAL structures photolithographically is explored. This combination can offer an opportunity to produce structures such as suction cups for hydrodynamic cell trapping.
机译:在过去的三十年中,由于微细加工技术实现了前所未有的精度和复杂性,许多基础研究领域都取得了长足的进步。为了准确模拟研究环境中的自然现象,迫切需要制造3D微结构(例如简单的球形和圆柱形)。出乎意料的是,由于生产3D结构的能力有限,如果要使用典型的平面微细加工方法实现器件,通常可以避免3D微结构。实际上,光刻是用于大规模制造微细加工系统的传统方法,也是最常用的方法,它可以在平面上定义几乎任意复杂的形状,但是生产3D结构的能力有限。已经报道了其他几种非平面的微加工技术,例如直接激光写入,倾斜的UV光刻和表面起皱。但是,没有一个可以被认为是光刻的真正竞争者,因为它们每个都受到以下问题的某种组合:昂贵的基础设施,较长的写入时间,较差的特征寻址,较差的分辨率以及缺乏控制。本文探索了利用表面张力驱动技术进行3D微加工的潜力。由于主要优点,即特别光滑的表面,成本效益和自对准特性,表面张力驱动技术似乎很有希望。到目前为止,对表面张力驱动技术的关注很少。本文的主要贡献包括介绍,表征和实现了用于3D微加工技术的新型表面张力辅助光刻技术(STAL)。 STAL由以下一系列步骤组成:软光刻对聚合物进行物理构图,然后通过UV曝光定义回流容器,然后进行热处理以固化容器并使聚合物的未曝光区域回流,最后通过曝光确保回流的结构保持其形状。结果表明,STAL提供了对半球形结构的高度和直径的独立控制。 3D结构有许多可能的应用,即使是以简单的球形盖的形式。半球形结构的应用之一是通过制造用于介电操纵细胞的新型半球形微电极来证明的。通过一系列实验和数值模拟,证明了半球形微电极相对于2D配置的优势。还探讨了STAL生产更复杂系统(例如将平面柱集成到STAL结构中的混合结构)的潜力。已经开发出一种简化的模型来预测在表面张力下柱的缺陷。在本文的最后一章中,确定了扩展STAL来生产更复杂的3D结构的机会。研究了在常规微流体结构范围内使用复杂容器制作凸面3D特征的过程。而且,还探索了用光刻技术对STAL结构进行构图的概念。这种结合可以提供生产诸如用于流体动力细胞捕获的吸盘的结构的机会。

著录项

  • 作者

    Nasabi M;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号