首页> 外文OA文献 >New bundle methods and U-Lagrangian for generic nonsmooth optimization
【2h】

New bundle methods and U-Lagrangian for generic nonsmooth optimization

机译:用于通用非光滑优化的新捆绑方法和U-Lagrangian

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nonsmooth optimization consists of minimizing a continuous function by systematically choosing iterative points from the feasible set via the computation of function values and generalized gradients (called subgradients). Broadly speaking, this thesis contains two research themes: nonsmooth optimization algorithms and theories about the substructure of special nonsmooth functions. Specifically, in terms of algorithms, we develop new bundle methods and bundle trust region methods for generic nonsmooth optimization. For theoretical work, we generalize the notion of U-Lagrangian and investigate its connections with some subsmooth structures. This PhD project develops trust region methods for generic nonsmooth optimization. It assumes the functions are Lipschitz continuous and the optimization problem is not necessarily convex. Currently the project also assumes the objective function is prox-regular but no structural information is given. Trust region methods create a local model of the problem in a neighborhood of the iteration point (called the `Trust Region'). They minimize the model over the Trust Region and consider the minimizer as a trial point for next iteration. If the model is an appropriate approximation of the objective function then the trial point is expected to generate function reduction. The model problem is usually easy to solve. Therefore by comparing the reduction of the model's value and that of the real problem, trust region methods adjust the radius of the trust region to continue to obtain reduction by solving model problems. At the end of this project, it is clear that (1) It is possible to develop a pure bundle method with linear subproblems and without trust region update for convex optimization problems; such method converges to minimizers if it generates an infinite sequence of serious steps; otherwise, it can be shown that the method generates a sequence of minor updates and the last serious step is a minimizer. First, this PhD project develops a bundle trust region algorithm with linear model and linear subproblem for minimizing a prox-regular and Lipschitz function. It adopts a convexification technique from the redistributed bundle method. Global convergence of the algorithm is established in the sense that the sequence of iterations converges to the fixed point of the proximal-point mapping given that convexification is successful. Preliminary numerical tests on standard academic nonsmooth problems show that the algorithm is comparable to bundle methods with quadratic subproblem. Second, following the philosophy behind bundle method of making full use of the previous information of the iteration process and obtaining a flexible understanding of the function structure, the project revises the algorithm developed in the first part by applying the nonmonotone trust region method.We study the performance of numerical implementation and successively refine the algorithm in an effort to improve its practical performance. Such revisions include allowing the convexification parameter to possibly decrease and the algorithm to restart after a finite process determined by various heuristics. The second theme of this project is about the theories of nonsmooth analysis, focusing on U-Lagrangian. When restricted to a subspace, a nonsmooth function can be differentiable within this space. It is known that for a nonsmooth convex function, at a point, the Euclidean space can be decomposed into two subspaces: U, over which a special Lagrangian (called the U-Lagrangian) can be defined and has nice smooth properties and V space, the orthogonal complement subspace of the U space. In this thesis we generalize the definition of UV-decomposition and U-Lagrangian to the context of nonconvex functions, specifically that of a prox-regular function. Similar work in the literature includes a quadratic sub-Lagrangian. It is our interest to study the feasibility of a linear localized U-Lagrangian. We also study the connections of the new U-Lagrangian and other subsmooth structures including fast tracks and partial smooth functions. This part of the project tries to provide answers to the following questions: (1) based on a generalized UV-decomposition, can we develop a linear U-Lagrangian of a prox-regular function that maintains prox-regularity? (2) through the new U-Lagrangian can we show that partial smoothness and fast tracks are equivalent under prox-regularity? At the end of this project, it is clear that for a function f that is properly prox-regular at a point x*, a new linear localized U-Lagrangian can be defined and its value at 0 coincides with f(x*); under some conditions, it can be proved that the U-Lagrangian is also prox-regular at 0; moreover partial smoothness and fast tracks are equivalent under prox-regularity and other mild conditions.
机译:非平滑优化包括通过函数值和广义梯度(称为子梯度)的计算从可行集中系统地选择迭代点,从而最小化连续函数。从广义上讲,本文包含两个研究主题:非光滑优化算法和特殊非光滑函数的子结构理论。具体来说,就算法而言,我们为通用的非平滑优化开发了新的捆绑方法和捆绑信任区域方法。对于理论工作,我们推广了U-Lagrangian的概念,并研究了它与某些亚光滑结构的联系。该博士项目开发了用于通用非平滑优化的信任域方法。它假定函数是Lipschitz连续的,并且优化问题不一定是凸的。目前,该项目还假设目标函数是近似正则函数的,但是没有给出结构信息。信任区域方法在迭代点附近(称为“信任区域”)创建问题的局部模型。他们将信任区域上的模型最小化,并将最小化器视为下一次迭代的试验点。如果模型是目标函数的适当近似值,则预期试验点会产生函数约简。模型问题通常很容易解决。因此,通过比较模型值的减少量与实际问题的减少量,信任区域方法调整信任区域的半径以继续通过解决模型问题来获得减少量。在该项目的最后,很明显(1)可以开发出具有线性子问题并且无需针对凸优化问题进行信任区域更新的纯捆绑方法;如果这种方法产生了一系列无穷无尽的严重步骤,则它会收敛到最小化方法;否则,可以表明该方法会生成一系列次要更新,而最后一个重要步骤是最小化。首先,该博士项目开发了一种具有线性模型和线性子问题的捆绑信任区域算法,以最小化正则规则和Lipschitz函数。它采用了重新分布束方法的凸化技术。在假定凸化成功的情况下,迭代序列收敛到近点映射的固定点的意义上建立了算法的全局收敛。对标准学术不光滑问题的初步数值测试表明,该算法可与具有二次子问题的捆绑方法相媲美。其次,遵循捆绑方法的原理,该方法充分利用了迭代过程的先前信息并获得了对函数结构的灵活理解,该项目通过应用非单调信任域方法对第一部分中开发的算法进行了修改。数值实现的性能,并逐步完善算法,以提高其实际性能。这样的修改包括允许凸化参数可能减小,以及算法在由各种启发式方法确定的有限过程之后重新开始。该项目的第二个主题是关于非平滑分析的理论,重点是U-Lagrangian。当限于子空间时,非平滑函数在该空间内可以是可微的。众所周知,对于非光滑凸函数,欧几里得空间可以在一点上分解为两个子空间:U,可以在其上定义特殊的拉格朗日(称为U-拉格朗日),并具有良好的光滑特性和V空间, U空间的正交补子空间。在本文中,我们将UV分解和U-Lagrangian的定义推广到非凸函数的上下文中,特别是对正则规则函数的定义。文献中类似的工作包括二次拉格朗日子。研究线性局部U-Lagrangian的可行性是我们的兴趣所在。我们还研究了新的U-Lagrangian和其他亚光滑结构的连接,包括快速轨道和部分光滑函数。该项目的这一部分试图为以下问题提供答案:(1)基于广义UV分解,我们能否开发出具有近似线性规律的线性U-拉格朗日函数,并保持近似线性? (2)通过新的U-Lagrangian,我们可以证明在近似正则性下部分平滑度和快速轨道是等效的吗?在该项目的最后,很明显,对于在点x *处适当近似正则的函数f,可以定义一个新的线性局部U-Lagrangian且其值为0时与f(x *)一致;在某些条件下,可以证明U-Lagrangian在0时也是正则规则的;此外,在接近规则性和其他温和条件下,局部平滑度和快速轨迹是等效的。

著录项

  • 作者

    Liu S;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号