首页> 外文OA文献 >From molecules to devices: can we create disruptive technologies based on 3D functionality at multiple dimensions to solve global challenges?
【2h】

From molecules to devices: can we create disruptive technologies based on 3D functionality at multiple dimensions to solve global challenges?

机译:从分子到设备:我们能否在多个维度上创建基于3D功能的颠覆性技术来解决全球挑战?

摘要

Since the initial breakthroughs in the 1960’s and 70’s that led to the development of the glucose biosensor, the oxygen electrode, ion-selective electrodes, and electrochemical/optochemical diagnostic devices, the vision of very reliable, affordable chemical sensors and bio-sensors capable of functioning autonomously for long periods of time (years), and providing access to continuous streams of real-time data remains unrealized. This is despite massive investment in research and the publication of many thousands of papers in the literature. It is over 40 years since the first papers proposing the concept of the artificial pancreas, by combining the glucose electrode with an insulin pump. Yet even now, there is no chemical sensor/biosensor that can function reliably inside the body for more than a few days, and such is the gap in what can be delivered (days), and what is required (minimum 10 years) for implantable devices, it is not surprising that in health diagnostics, the overwhelmingly dominant paradigm for reliable measurements is single use disposable sensors. Realising disruptive improvements in chem/bio-sensing platforms capable of long-term (months, years) independent operation requires a step-back and rethinking of strategies, and considering solutions suggested by nature, rather than incremental improvements in available technologies. udThrough developments in 3D fabrication technologies in recent years, we can now build and characterize much more sophisticated 3D platforms than was previously possible. Furthermore also we can use hybrid materials – mixtures of organic and inorganic materials, create regions of differing polarity and hydrophobicity, mix passive and binding behaviours, regions of differing flexibility/rigidity, hardness/softness. In addition, we can integrate materials that can switch between these characteristics – selecting when and where these behaviours exist. In this talk, I will present a series of examples of biomimetic microfluidic building blocks that exhibit photoswitchable characteristics such as programmed microvehicle movement (chemotaxis), switchable binding and release, switchable actuation (e.g. valving), and photodetection. These building blocks can be in turn integrated into microfluidic systems with hitherto unsurpassed functionalities that can contribute to bridging the gap between what is required for many applications, and what we can currently deliver. These disruptive advances should open the way to long-term implantable devices that can monitor, report and assist the management of an individual’s personal health. A key development will be the integration of self-diagnosis and self-repair capabilities to extend their useful lifetime. ud
机译:自1960年代和70年代最初的突破导致葡萄糖生物传感器,氧气电极,离子选择电极和电化学/光化学诊断设备的发展以来,人们就对非常可靠,价格适中的化学传感器和能够可以长时间(数年)自主运行,并且无法访问连续的实时数据流。尽管在研究上投入了大量资金,并且在文献中发表了数千篇论文,但仍需这样做。自第一篇论文提出了人造胰腺的概念以来已有40多年的历史了,该论文通过将葡萄糖电极与胰岛素泵相结合而提出。但是,即使到现在,还没有化学传感器/生物传感器能够在体内可靠地运行超过几天,这就是可交付的天数(天)以及植入物所需的天数(至少10年)之间的差距。在健康诊断中,可靠测量的绝对优势范例是一次性使用一次性传感器,这不足为奇。要实现能够长期(数月,数年)独立运行的化学/生物传感平台的颠覆性改进,就需要对策略进行退一步和重新思考,并考虑自然界提出的解决方案,而不是对可用技术进行逐步改进。通过近几年3D制造技术的发展,我们现在可以构建和表征比以前更复杂的3D平台。此外,我们还可以使用混合材料-有机和无机材料的混合物,创建不同极性和疏水性的区域,混合被动行为和粘合行为,以及不同柔韧性/刚度,硬度/柔软度的区域。此外,我们可以集成可以在这些特性之间切换的材料-选择何时何地存在这些行为。在本次演讲中,我将展示一系列仿生微流控构建基块的示例,这些构建基块具有光可切换的特性,例如程序化的微车运动(趋化性),可切换的绑定和释放,可切换的致动(例如阀门)和光检测。这些构建模块可以依次集成到具有迄今为止无与伦比的功能的微流体系统中,这些功能可以缩小许多应用程序所需要的功能与我们目前可以提供的功能之间的差距。这些突破性进展将为可植入设备的长期使用开辟道路,该设备可以监测,报告并帮助管理个人的个人健康。关键的发展将是自我诊断和自我修复功能的集成,以延长其使用寿命。 ud

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号