首页> 外文OA文献 >Development of Innovative Microfluidic Polymeric Technologies for Point-of-care Integrated Diagnostics Devices
【2h】

Development of Innovative Microfluidic Polymeric Technologies for Point-of-care Integrated Diagnostics Devices

机译:开发用于即时检测和集成诊断设备的创新微流体聚合物技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents the development of four different microfluidic technologies that can be used as stand-alone devices or integrated in point-of-care systems.ud ud The first technology is a rapid, low-cost, portable microfluidic system for assessing the somatic cell count and fat content of milk in 15 min using a “sample-in, answer-out” approach. The system consists of twelve independent microfluidic devices, essentially flattened funnel structures, fabricated on the footprint of a plastic compact disc (CD). The assay separates cells and fat globules based on their densities (by differential sedimentation), concentrating white cells in the closed-end channel near the outer rim of the CD for estimation of total “cell pellet” volume, while fat globules move toward the center of disc rotation, forming a fat “band” in the funnel. The closed-end channel provides accurate cell counts over the range 50,000 to over 3,000,000 cells per mL.udud A technique is also presented to recirculate liquids in a microfluidic channel by alternating the predominance of centrifugal and capillary forces. With this technique, liquid volumes of μL to mL can be sampled with many sizes of microfluidic channels that contain only a fraction of the sample at one time, provided the channel wall with greatest surface area is hydrophilic. We present a theoretical model describing the balance of centrifugal and capillary forces in the device and validate the model experimentally.udud Towards the development of an integrated pathogen identification system, two other technologies are demonstrated and implemented. The design, fabrication, and characterization of a polymer centrifugal microfluidic system for the specific detection of bacterial pathogens is presented. This single-cartridge platform integrates bacteria capture and concentration, supernatant solution removal, lysis, and nucleic-acid sequence-based amplification (NASBA) in a single unit. The unit is fabricated using multilayer lamination and consists of five different polymer layers. Bacteria capture and concentration are accomplished by sedimentation in five minutes. Centrifugation forces also drive the subsequent steps. A wax valve is integrated in the cartridge to enable high-speed centrifugation. Oil is used to prevent evaporation during reactions requiring thermal cycling. Device functionality was demonstrated by real-time detection of E. coli cells from a 200-μL sample.udud Finally, the laser-printer-based fabrication of pressure-resistant microfluidic single-use valves is reported, along with their implementation on pressure-driven and centrifugal microfluidic platforms. A laser printer is used to selectively deposit toner on a plastic substrate in the form of circular dots. After assembly into a microfluidic device, the valve is opened (melted) with a pulse of laser light. This is an easy approach to connect multiple fluidic levels. This simple technology is compatible with a range of polymer microfabrication technologies and should facilitate the development of fully integrated, (re)configurable, and automated lab-on-a-chip systems, particularly when reagents must be stored on chip for extended periods, e.g. for medical diagnostic devices, lab-on-a-chip synthetic systems, or hazardous bio/chemical analysis platforms.ud
机译:本文介绍了四种不同的微流体技术的发展,这些技术可以用作独立设备或集成在即时护理系统中。 ud ud第一种技术是一种快速,低成本,便携式的微流体系统,用于评估使用“进样,出样”方法在15分钟内获得牛奶中的体细胞计数和脂肪含量。该系统由十二个独立的微流控设备组成,这些设备基本上是扁平的漏斗结构,制造在塑料光盘(CD)的足迹上。该测定法根据细胞和脂肪小球的密度(通过差异沉降)将其分离,将白细胞集中在CD外缘附近的封闭端通道中,以估计“细胞团”的总体积,而脂肪小球向中心移动盘旋转的过程,在漏斗中形成一个胖“带”。封闭端通道可提供每毫升50,000至3,000,000个细胞之间的准确细胞计数。 ud ud还提出了一种通过交替改变离心力和毛细作用力使微流体通道中的液体再循环的技术。使用这种技术,可以通过多种尺寸的微流控通道对液体体积从μL到mL的样品进行采样,只要通道壁具有最大的表面积是亲水的,一次就只包含一部分样品。我们提供了描述设备中离心力和毛细作用力平衡的理论模型,并通过实验验证了该模型。 ud ud为开发集成的病原体识别系统,还展示并实现了另外两种技术。介绍了用于细菌病原体特异性检测的聚合物离心微流控系统的设计,制造和表征。该单墨盒平台将细菌捕获和浓缩,上清液去除,裂解和基于核酸序列的扩增(NASBA)集成在一个单元中。该单元使用多层层压制成,由五个不同的聚合物层组成。细菌的捕获和浓缩通过五分钟的沉淀来完成。离心力也驱动后续步骤。蜡阀集成在阀芯中,可实现高速离心。在需要热循环的反应中,油被用来防止蒸发。通过实时检测200μL样品中的大肠杆菌细胞证明了设备的功能。 ud ud最后,报告了基于激光打印机的耐压微流控一次性阀门的制造及其实现方法。在压力驱动和离心微流体平台上。激光打印机用于以圆形点的形式选择性地将调色剂沉积在塑料基板上。组装成微流体设备后,用激光脉冲打开(熔化)阀门。这是连接多个流体液位的简便方法。这种简单的技术可与多种聚合物微制造技术兼容,并且应有助于开发完全集成的(可重新配置)和自动化的单芯片实验室系统,特别是当试剂必须长时间存储在芯片上时,例如用于医疗诊断设备,片上实验室合成系统或危险的生物/化学分析平台。 ud

著录项

  • 作者

    Garcia-Cordero Jose L.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号