首页> 外文OA文献 >Integrated magnetic components for high-power high-current dc-dc converters
【2h】

Integrated magnetic components for high-power high-current dc-dc converters

机译:大功率大电流DC-DC转换器的集成磁性元件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis is focused on the design and development of an integrated magnetic (IM) structure for use in high-power high-current power converters employed in renewable energy applications. These applications require low-cost, high efficiency and high-power density magnetic components and the use of IM structures can help achieve this goal. A novel CCTT-core split-winding integrated magnetic (CCTT IM) is presented in this thesis. This IM is optimized for use in high-power dc-dc converters. The CCTT IM design is an evolution of the traditional EE-core integrated magnetic (EE IM). The CCTT IM structure uses a split-winding configuration allowing for the reduction of external leakage inductance, which is a problem for many traditional IM designs, such as the EE IM. Magnetic poles are incorporated to help shape and contain the leakage flux within the core window. These magnetic poles have the added benefit of minimizing the winding power loss due to the airgap fringing flux as they shape the fringing flux away from the split-windings. A CCTT IM reluctance model is developed which uses fringing equations to accurately predict the most probable regions of fringing flux around the pole and winding sections of the device. This helps in the development of a more accurate model as it predicts the dc and ac inductance of the component. A CCTT IM design algorithm is developed which relies heavily on the reluctance model of the CCTT IM. The design algorithm is implemented using the mathematical software tool Mathematica. This algorithm is modular in structure and allows for the quick and easy design and prototyping of the CCTT IM. The algorithm allows for the investigation of the CCTT IM boxed volume with the variation of input current ripple, for different power ranges, magnetic materials and frequencies. A high-power 72 kW CCTT IM prototype is designed and developed for use in an automotive fuelcell-based drivetrain. The CCTT IM design algorithm is initially used to design the component while 3D and 2D finite element analysis (FEA) software is used to optimize the design. Low-cost and low-power loss ferrite 3C92 is used for its construction, and when combined with a low number of turns results in a very efficient design. A paper analysis is undertaken which compares the performance of the high-power CCTT IM design with that of two discrete inductors used in a two-phase (2L) interleaved converter. The 2L option consists of two discrete inductors constructed from high dc-bias material. Both topologies are designed for the same worst-case phase current ripple conditions and this ensures a like-for-like comparison. The comparison indicates that the total magnetic component boxed volume of both converters is similar while the CCTT IM has significantly lower power loss. Experimental results for the 72 kW, (155 V dc, 465 A dc input, 420 V dc output) prototype validate the CCTT IM concept where the component is shown to be 99.7 % efficient. The high-power experimental testing was conducted at General Motors advanced technology center in Torrence, Los Angeles. Calorific testing was used to determine the power loss in the CCTT IM component. Experimental 3.8 kW results and a 3.8 kW prototype compare and contrast the ferrite CCTT IM and high dc-bias 2L concepts over the typical operating range of a fuelcell under like-for-like conditions. The CCTT IM is shown to perform better than the 2L option over the entire power range. An 8 kW ferrite CCTT IM prototype is developed for use in photovoltaic (PV) applications. The CCTT IM is used in a boost pre-regulator as part of the PV power stage. The CCTT IM is compared with an industry standard 2L converter consisting of two discrete ferrite toroidal inductors. The magnetic components are compared for the same worst-case phase current ripple and the experimental testing is conducted over the operation of a PV panel. The prototype CCTT IM allows for a 50 % reduction in total boxed volume and mass in comparison to the baseline 2L option, while showing increased efficiency.
机译:本文的重点是设计和开发集成磁(IM)结构,该结构可用于可再生能源应用中的大功率大电流功率转换器。这些应用需要低成本,高效率和高功率密度的磁性组件,而IM结构的使用可以帮助实现这一目标。本文提出了一种新型的CCTT铁心分绕组集成磁(CCTT IM)。该IM经过优化,可用于大功率DC-DC转换器。 CCTT IM设计是传统EE核心集成磁性(EE IM)的发展。 CCTT IM结构使用分流绕组配置,可减少外部漏感,这对于许多传统的IM设计(例如EE IM)都是一个问题。结合了磁极以帮助定型并将磁通窗口内的漏磁通包含在内。这些磁极还有一个额外的好处,就是可以将由于气隙边缘磁通量引起的绕组功率损耗降至最低,因为它们使边缘磁通量远离分流绕组。开发了CCTT IM磁阻模型,该模型使用边缘方程来准确预测器件磁极和绕组部分周围的边缘磁通量的最可能区域。这有助于开发更准确的模型,因为它可以预测组件的直流和交流电感。开发了CCTT IM设计算法,该算法在很大程度上依赖于CCTT IM的磁阻模型。该设计算法是使用数学软件工具Mathematica实现的。该算法在结构上是模块化的,并允许快速,轻松地设计和制作CCTT IM的原型。该算法允许针对不同的功率范围,磁性材料和频率,通过输入电流纹波的变化来研究CCTT IM盒装体积。设计和开发了大功率72 kW CCTT IM原型,用于基于汽车燃料电池的传动系统。最初使用CCTT IM设计算法来设计组件,而使用3D和2D有限元分析(FEA)软件来优化设计。低成本,低功耗的铁氧体3C92用于其结构,并且与少量匝数结合使用时,可以实现非常有效的设计。进行了论文分析,将高功率CCTT IM设计的性能与两相(2L)交错转换器中使用的两个分立电感的性能进行了比较。 2L选件包括两个由高直流偏置材料构成的分立电感器。两种拓扑都针对相同的最坏情况下的相电流纹波条件而设计,从而确保了相似的比较。比较表明,两个转换器的总磁性元件盒装体积相似,而CCTT IM的功率损耗明显较低。 72 kW(155 V dc,465 A dc输入,420 V dc输出)原型的实验结果验证了CCTT IM概念的有效性,该组件的效率为99.7%。高功率实验测试是在位于洛杉矶托伦斯的通用汽车先进技术中心进行的。热量测试用于确定CCTT IM组件中的功率损耗。实验3.8 kW的结果和3.8 kW的原型在相同条件下在燃料电池的典型工作范围内比较并对比了铁氧体CCTT IM和高直流偏置2L概念。在整个功率范围内,CCTT IM的性能优于2L选件。开发了一个8 kW铁氧体CCTT IM原型,用于光伏(PV)应用。 CCTT IM在升压预调节器中用作PV功率级的一部分。将CCTT IM与由两个分立的铁氧体环形电感器组成的行业标准2L转换器进行比较。比较了磁性组件在最坏情况下的相电流纹波,并在光伏面板的运行过程中进行了实验测试。与基线2L选件相比,CCTT IM原型可将装箱的总体积和质量减少50%,同时显示出更高的效率。

著录项

  • 作者

    Hartnett Kevin John;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号