Electrically pumped GaAsBi/GaAs quantum well lasers are a promising new class of near-infrared devices where, by use of the unusual band structure properties of GaAsBi alloys, it is possible to suppress the dominant energy-consuming Auger recombination and inter-valence band absorption loss mechanisms, which greatly impact upon the device performance. Suppression of these loss mechanisms promises to lead to highly efficient, uncooled operation of telecommunications lasers, making GaAsBi system a strong candidate for the development of next-generation semiconductor lasers. In this report we present the first experimentally measured optical gain, absorption and spontaneous emission spectra for GaAsBi-based quantum well laser structures. We determine internal optical losses of 10–15 cm−1 and a peak modal gain of 24 cm−1, corresponding to a material gain of approximately 1500 cm−1 at a current density of 2 kA cm−2. To complement the experimental studies, a theoretical analysis of the spontaneous emission and optical gain spectra is presented, using a model based upon a 12-band k.p Hamiltonian for GaAsBi alloys. The results of our theoretical calculations are in excellent quantitative agreement with the experimental data, and together provide a powerful predictive capability for use in the design and optimisation of high efficiency lasers in the infrared.
展开▼
机译:电泵浦GaAsBi / GaAs量子阱激光器是一种很有前途的新型近红外器件,通过利用GaAsBi合金的非常规能带结构特性,可以抑制占主导地位的耗能俄歇复合和价带吸收损耗机制,极大地影响了设备性能。抑制这些损耗机制有望导致电信激光器的高效,非制冷运行,从而使GaAsBi系统成为下一代半导体激光器发展的强有力候选者。在本报告中,我们介绍了基于GaAsBi的量子阱激光器结构的第一个实验测量的光学增益,吸收和自发发射光谱。我们确定内部光损耗为10–15 cm-1,峰值模态增益为24 cm-1,相当于在2 kA cm-2的电流密度下的材料增益约为1500 cm-1。为了补充实验研究,使用基于GaAsBi合金的基于12带k.p哈密顿量的模型,对自发发射光谱和光学增益光谱进行了理论分析。我们的理论计算结果与实验数据在数量上非常吻合,并且一起为红外高效激光器的设计和优化提供了强大的预测能力。
展开▼