首页> 外文学位 >Enhancement of Internal Quantum Efficiency and Optical Gain for Nitride Light-Emitting Diodes and Laser Diodes.
【24h】

Enhancement of Internal Quantum Efficiency and Optical Gain for Nitride Light-Emitting Diodes and Laser Diodes.

机译:增强氮化物发光二极管和激光二极管的内部量子效率和光学增益。

获取原文
获取原文并翻译 | 示例

摘要

Energy efficiency and renewable energy technologies have significant importance for achieving sustainable energy systems in modern society. Lighting accounts for more than 22% of the total electrical energy usage in US, and technologies based on solid state lighting (SSL) utilizing semiconductor-based material has tremendous promise to replace the existing lighting devices. As compared to traditional incandescent and fluorescent lamps, SSL is more energy-efficient, reliable, and environmentally-friendly. Once widely used, SSL could lead to the decrease of worldwide electricity consumption for lighting by >50% and reduces total electricity consumption by >10%. The U.S. Department of Energy describes SSL as a pivotal emerging technology that promises to fundamentally alter lighting in the future. Rapid progress in SSL research and development has resulted in the advent of light emitting diodes (LEDs) for general lighting applications. Two major challenges for current state-of-art III-nitride based LEDs are (1) 'green gap' issue in InGaN quantum well light-emitting diodes, and (2) 'efficiency droop' issue in III-Nitride LEDs resulting in output power quenching at high current injection.;In this dissertation, novel approaches to address the major issues related to state-of-the-art nitride LEDs are investigated, in particular related to (1) engineering of InGaN nanostructure active layers for achieving high internal quantum efficiency and minimal efficiency droop in nitride LEDs, and (2) the use of surface plasmon approach for increasing the radiative efficiency in nitride LEDs. Specifically, the dissertation covers the following topics: (1) novel InGaN-based quantum well structures such as staggered InGaN QW, type-II InGaN-GaNAs QW, straincompensated InGaN-AlGaN QW, and InGaN-delta-InN QW with enhanced matrix element for achieving high radiative efficiency; (2) the use of lattice-matched InGaN-AlInN QW-barrier structure for suppressing the efficiency-droop in nitride LEDs; and (3) the use of surface plasmon dispersion engineering to achieve wide -- spectrum tuning of the Purcell peak enhancement of the radiative recombination rate for InGaN quantum well LEDs.;To understand the device physics for III-Nitride compound semiconductor based heterostructure / nanostructure, a comprehensive self-consistent numerical model based on 6-band k·p method has been developed. The model allows the calculation of the optical properties of III-Nitride semiconductor nanostructures via calculating the energy dispersion relation, spontaneous recombination rate, and optical gain spectrum. In addition, the model allows prediction of device parameter values such as threshold current density of laser diodes and power conversion (wallplug) efficiency of LEDs.
机译:能源效率和可再生能源技术对于实现现代社会中的可持续能源系统具有重要意义。照明占美国总电能使用量的22%以上,基于固态照明(SSL)的技术利用基于半导体的材料,有望取代现有的照明设备。与传统的白炽灯和荧光灯相比,SSL更节能,更可靠且更环保。一旦被广泛使用,SSL可以使全球照明用电量减少50%以上,总用电量减少10%以上。美国能源部将SSL描述为一项关键的新兴技术,有望在未来从根本上改变照明。 SSL研究与开发的飞速发展导致用于一般照明应用的发光二极管(LED)的出现。当前基于III族氮化物的LED的两个主要挑战是(1)InGaN量子阱发光二极管中的“绿隙”问题,以及(2)III氮化物LED中的“效率下降”问题,导致输出本文研究了解决与最新氮化物LED相关的主要问题的新方法,特别是与(1)InGaN纳米结构有源层的工程化有关,以实现高内部氮化物LED的量子效率和最小效率下降,以及(2)使用表面等离子体激元方法来提高氮化物LED的辐射效率。具体而言,本文涵盖以下主题:(1)新颖的基于InGaN的量子阱结构,例如交错的InGaN QW,II型InGaN-GaNAs QW,应变补偿的InGaN-AlGaN QW和具有增强矩阵元素的InGaN-δ-InNQW用于实现高辐射效率; (2)使用晶格匹配的InGaN-AlInN QW势垒结构来抑制氮化物LED的效率下降; (3)使用表面等离子体激元分散工程来实现InGaN量子阱LED的Purcell峰增强辐射复合率的宽光谱调谐。;了解基于III-氮化物化合物半导体的异质结构/纳米结构的器件物理建立了基于6波段k·p方法的综合自洽数值模型。该模型可以通过计算能量色散关系,自发复合率和光学增益谱来计算III型氮化物半导体纳米结构的光学性质。此外,该模型还可以预测设备参数值,例如激光二极管的阈值电流密度和LED的功率转换(墙上插头)效率。

著录项

  • 作者

    Zhao, Hongping.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 266 p.
  • 总页数 266
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号