首页> 外文学位 >Efficiency droop mitigation and quantum efficiency enhancement for nitride light-emitting diodes.
【24h】

Efficiency droop mitigation and quantum efficiency enhancement for nitride light-emitting diodes.

机译:氮化物发光二极管的效率下降缓解和量子效率增强。

获取原文
获取原文并翻译 | 示例

摘要

In the past decade, GaN-based nitrides have had a considerable impact in solid state lighting and high speed high power devices. InGaN-based LEDs have been widely used for all types of displays in TVs, computers, cell phones, etc. More and more high power LEDs have also been introduced in general lighting market. Once widely used, such LEDs could lead to the decrease of worldwide electrical consumption for lighting by more than 50% and reduce total electricity consumption by > 10%.;However, there are still challenges for current state-of-the art InGaN-based LEDs, including 'efficiency droop' issues that cause output power quenching at high current injection levels (> 100 A/cm2). In this dissertation, approaches were investigated to address the major issues related to state-of-the-art nitride LEDs, in particular related to (1) efficiency droop investigations on m-plane and c-plane LEDs: enhanced matrix elements in m-plane LEDs and smaller hole effective mass favors the hole transport across the active region so that m-plane LEDs exhibit 30% higher quantum efficiency and negligible efficiency droop at high injection levels compared to c-plane counterparts; (2) engineering of InGaN active layers for achieving high quantum efficiency and minimal efficiency droop: lower and thinner InGaN barrier enhance hole transport as well as improves the quantum efficiencies at injection levels; (3) double-heterostructure (DH) active regions: various thicknesses were also investigated in order to understand the electron and hole recombination mechanism. We also present that using multi-thin DH active regions is a superior approach to enhance the quantum efficiency compared with simply increasing the single DH thickness or the number of quantum wells (QWs, 2 nm-thick) in multi-QW (MQW) LED structures due to the better material quality and higher density of states. Additionally, increased thickness of stair-case electron injectors (SEIs) has been demonstrated to greatly mitigate electron overflow without sacrificing material quality of the active regions. Finally, approaches to enhance light extraction efficiency including using Ga doped ZnO as the p-GaN contact layer to improve light extraction as well as current spreading was introduced.
机译:在过去的十年中,基于GaN的氮化物对固态照明和高速大功率器件产生了重大影响。基于InGaN的LED已广泛用于电视,计算机,手机等的所有类型的显示器中。越来越多的高功率LED也已引入普通照明市场。一旦被广泛使用,这种LED可以使全球照明用电量减少50%以上,并将总用电量减少超过10%;然而,当前基于InGaN的最新技术仍然存在挑战LED,包括“效率下降”问题,在高电流注入水平(> 100 A / cm2)下会导致输出功率猝灭。在本文中,研究了解决与最新氮化物LED相关的主要问题的方法,特别是与(1)m平面和c平面LED的效率下降研究:m-平面LED和较小的空穴有效质量有利于空穴跨有源区的传输,因此与c平面同类产品相比,m平面LED在高注入水平下具有30%的高量子效率和可忽略的效率下降。 (2)InGaN有源层的工程设计,以实现高量子效率和最小效率下降:更低和更薄的InGaN势垒可增强空穴传输,并提高注入级的量子效率; (3)双异质结构(DH)有源区:还研究了各种厚度,以了解电子和空穴的复合机理。我们还提出,与简单地增加多QW(MQW)LED中的单个DH厚度或量子阱的数量(QW,2 nm厚)相比,使用多层DH有源区是一种提高量子效率的更好方法。由于具有更好的材料质量和更高的状态密度,所以结构。另外,已证明增加的阶梯式电子喷射器(SEI)的厚度可在不牺牲有源区材料质量的情况下极大地减轻电子溢出。最后,介绍了提高光提取效率的方法,包括使用掺杂Ga的ZnO作为p-GaN接触层来改善光提取以及电流扩散。

著录项

  • 作者

    Li, Xing.;

  • 作者单位

    Virginia Commonwealth University.;

  • 授予单位 Virginia Commonwealth University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号