首页> 外文OA文献 >Visual navigation for mobile robots using the Bag-of-Words algorithm
【2h】

Visual navigation for mobile robots using the Bag-of-Words algorithm

机译:使用词袋算法的移动机器人视觉导航

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robust long-term positioning for autonomous mobile robots is essential for many applications. In manyenvironments this task is challenging, as errors accumulate in the robot’s position estimate over time. Therobot must also build a map so that these errors can be corrected when mapped regions are re-visited; thisis known as Simultaneous Localisation and Mapping, or SLAM.Successful SLAM schemes have been demonstrated which accurately map tracks of tens of kilometres, howeverthese schemes rely on expensive sensors such as laser scanners and inertial measurement units. A moreattractive, low-cost sensor is a digital camera, which captures images that can be used to recognise wherethe robot is, and to incrementally position the robot as it moves. SLAM using a single camera is challenginghowever, and many contemporary schemes suffer complete failure in dynamic or featureless environments, orduring erratic camera motion. An additional problem, known as scale drift, is that cameras do not directlymeasure the scale of the environment, and errors in relative scale accumulate over time, introducing errorsinto the robot’s speed and position estimates.Key to a successful visual SLAM system is the ability to continue operation despite these difficulties, andto recover from positioning failure when it occurs. This thesis describes the development of such a scheme,which is known as BoWSLAM. BoWSLAM enables a robot to reliably navigate and map previously unknownenvironments, in real-time, using only a single camera.In order to position a camera in visually challenging environments, BoWSLAM combines contemporary visualSLAM techniques with four new components. Firstly, a new Bag-of-Words (BoW) scheme is developed, whichallows a robot to recognise places it has visited previously, without any prior knowledge of its environment.This BoW scheme is also used to select the best set of frames to reconstruct positions from, and to findefficient wide-baseline correspondences between many pairs of frames. Secondly, BaySAC, a new outlier-robust relative pose estimation scheme based on the popular RANSAC framework, is developed. BaySACallows the efficient computation of multiple position hypotheses for each frame. Thirdly, a graph-basedrepresentation of these position hypotheses is proposed, which enables the selection of only reliable positionestimates in the presence of gross outliers. Fourthly, as the robot explores, objects in the world are recognisedand measured. These measurements enable scale drift to be corrected. BoWSLAM is demonstrated mappinga 25 minute 2.5km trajectory through a challenging and dynamic outdoor environment in real-time, andwithout any other sensor input; considerably further than previous single camera SLAM schemes.
机译:对于许多应用而言,自主移动机器人的稳固的长期定位至关重要。在许多环境中,这项任务具有挑战性,因为随着时间的流逝,误差会累积在机器人的位置估算中。 Therobot还必须构建一个地图,以便在重新访问映射的区域时可以纠正这些错误。已经证明了成功的SLAM方案可以准确地绘制数十公里的轨迹,但是这些方案依赖于昂贵的传感器,例如激光扫描仪和惯性测量单元。更具吸引力的低成本传感器是数码相机,它可以捕获图像以识别机器人的位置,并在机器人移动时逐步定位。然而,使用单个摄像机的SLAM具有挑战性,并且许多现代方案在动态或无特征的环境中或在摄像机运动不稳定的情况下都遭受了彻底的失败。另一个问题称为标度漂移,是相机无法直接测量环境的标度,相对标度的误差会随着时间的推移而累积,从而将误差引入到机器人的速度和位置估计中。成功的视觉SLAM系统的关键在于尽管有这些困难,仍可继续操作,并在发生定位故障时从故障中恢复。本文描述了这种称为BoWSLAM的方案的开发。 BoWSLAM使机器人仅使用一个摄像机即可可靠地实时导航和映射以前未知的环境。为了将摄像机定位在视觉挑战性环境中,BoWSLAM将当代的visualSLAM技术与四个新组件结合在一起。首先,开发了一种新的单词袋(BoW)方案,该方案允许机器人在没有任何环境知识的情况下识别之前曾去过的地方,并且还用于选择最佳的框架集进行重构从多对帧之间找到有效的宽基线对应关系,并找到有效的宽基线对应关系。其次,基于流行的RANSAC框架,开发了一种新的异常鲁棒相对姿态估计方案BaySAC。 BaySAC允许有效计算每个帧的多个位置假设。第三,提出了这些位置假设的基于图的表示,这使得能够在存在总体异常值的情况下仅选择可靠的位置估计。第四,随着机器人的探索,世界上的物体被识别和测量。这些测量值可以校正水垢漂移。 BoWSLAM被演示为在充满挑战的动态室外环境中实时绘制25分钟2.5公里的轨迹,而无需任何其他传感器输入;比以前的单相机SLAM方案要远得多。

著录项

  • 作者

    Botterill Tom;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号