首页> 外文OA文献 >Mechanical response of polyether polyurethane foams under multiaxial stress and the initial yielding of ultrathin films
【2h】

Mechanical response of polyether polyurethane foams under multiaxial stress and the initial yielding of ultrathin films

机译:多轴应力下聚醚型聚氨酯泡沫塑料的力学响应及超薄膜的初始屈服

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the first part of this thesis, we study the mechanical response of elastic polyether polyurethane (EPP)foams by means of experiments, theory, and modeling. The experiments include five loading cases: uniaxialcompression along the rise direction; uniaxial compression along two mutually perpendicular transversedirections; uniaxial tension along the rise direction; shear combined with compression along the rise direction;and hydrostatic pressure combined with compression along the rise direction. We use a commercial series offive EPP foams of apparent densities (mass per unit volume of foam) 50.3, 63.0, 77.0, 162.9 and 220:5 kg/m3.We perform a test for each foam in the series and each loading case. In every test we measure the mechanicalresponse in the form of a stress-strain curve or a force-displacement curve; in several tests we use a DigitalImage Correlation (DIC) technique to compute the strain fields on the surface of the specimen.For some loading cases, including uniaxial compression along the rise direction, the mechanical response ofthe three foams of lower density exhibits a stress plateau. This stress plateau has been commonly interpretedas a manifestation of a bifurcation of equilibrium (Euler buckling of the microstruture of the foam), a globalphenomenon that encompasses the entire microstructure of the foam at once. In this interpretation, theplateau stress (i.e., the value of stress on the stress plateau) is the eigenvalue associated with the bifurcationof equilibrium. Nevertheless, our experimental results indicate that a stress plateau is invariably accompaniedby heterogeneous, two-phase strain fields, consistent with the occurrence of a configurational phase transition.Thus we argue that the plateau stress is the Maxwell stress associated with the attainment of a limit point(snap-through buckling of a cell of the foam), a local phenomenon which progressively sweeps through themicrostructure of the foam.For other loading cases, including uniaxial compression along a transverse direction, the mechanicalresponse does not exhibit a stress plateau, and the stress-strain curves harden monotonically regardless ofthe density of the foam. The strain fields remain homogeneous, even for the least dense foam.We use our experimental results to calibrate a mean-field model of EPP foams. In this model, a unitcell composed of several bars is cut off from an idealized, perfectly periodic foam microstrusture. The tipsof the bars of the cell are subjected to a set of displacements affine with the applied mean deformationgradient, and left to rotate freely. The unit cell is characterized using a few physically meaningful materialand geometric parameters whose values may be readily estimated for any given foam.We verify that under uniaxial loading the model predicts configurational phase transitions, stress plateaus,and two-phase fields for low-density foams; a critical point for foams of a critical density; and monotonicallyhardening stress-strain curves for foams of density higher than the critical density. The critical exponentsassociated with the critical point are the same as in other mean-field models such as the Van der Wallsmodel of a fluid.With a suitable choice of parameters, the model gives predictions that compare favorably with ourexperimental results for all loading cases. In particular, the model gives a nonconvex strain energy functionwhere (and only where) the experiments exhibit a stress plateau and two-phase strain fields.We conclude that the mechanical response of EPP foams is dominated at large strains by either one oftwo mechanisms at the level of a foam cell: snap-through buckling, which leads to nonconvex strain energyfunctions, stress plateaus, and two-phase strain fields; or bending, which leads to convex strain energyfunctions, monotonically increasing stresses, and homogeneous strain fields.This conclusion allows us to interpret an extensive series of experiments in which EPP foam specimens arepenetrated with a wedge-shaped punch. For low-density foams, we find experimentally that the mechanicalresponse is linear up to a penetration of the punch of about 40% of the height of the specimen. We surmisethat the strain field in the specimen consists of a high-strain phase in a region close to the tip, where a phasetransition has taken place, and a low-strain phase in a region far from the tip, where the phase transition isyet to take place. The two regions are separated by a sharp interface, where the strain is discontinuous. Weuse DIC to trace the sharp interface as it grows and sweeps through the specimen during a test.By studying theoretically the self-similar growth of a sharp interface, we predict a linear response withinthe self-similar regime, in accord with our experimental findings. We then apply the same theory to the caseof a conical punch, predict a quadratic response within the self-similar regime, and verify our prediction byperforming experiments with a conical punch. We conclude that in the self-similar regime the mechanicalresponse is ruled entirely by geometry and depends only on the dimensionality of the punch and the plateaustress of the low-density foam.In the second part of this thesis, we study the initial yielding of ultrathin metallic films (thickness of afraction of a micrometer). Recent experiments indicate that in free-standing metallic films of constant grain sizethe initial yield stress increases as the film becomes thinner, it peaks for a thickness on the order of 100 nm,and then starts to decrease. This reversing (first hardening, then softening) size effect poses two challenges:(1) It cannot be explained using currently available models and (2) it appears to contradict the little-knownbut remarkable experimental results of J. W. Beams [1959], in which the size effect in bulge tests did notreverse even for a thickness of 20 nm.We show that the reversing size effect can be explained and the contradiction dispelled by taking intoaccount the effect of the surface stress on the initial yielding. We also predict that the mode of failure ofa film changes from ductile to brittle for a thickness on the order of 100 nm, in accord with experiments.Our successful application of methods of continuum mechanics to films as thin as 100 times a typical latticeparameter adds to a growing realization of the robustness of these methods at ultrasmall length scales.
机译:在本文的第一部分,我们通过实验,理论和建模方法研究了弹性聚醚聚氨酯(EPP)泡沫的力学响应。实验包括五个载荷情况:沿上升方向的单轴压缩;沿轴向的单轴压缩;沿轴向的单轴压缩。沿两个相互垂直的横向方向的单轴压缩;沿上升方向的单轴张力;剪切力与沿上升方向的压缩相结合;静水压力与沿上升方向的压缩相结合。我们使用表观密度(泡沫的单位体积质量)为50.3、63.0、77.0、162.9和220:5 kg / m3的商业系列通用EPP泡沫,我们对该系列中的每种泡沫和每种装载情况进行了测试。在每次测试中,我们都以应力-应变曲线或力-位移曲线的形式来测量机械响应。在一些测试中,我们使用DigitalImage Correlation(DIC)技术来计算样品表面的应变场。对于某些载荷情况,包括沿上升方向的单轴压缩,三种密度较低的泡沫的机械响应呈现出应力平稳状态。这种应力平稳期通常被解释为平衡分叉的表现(泡沫微结构的欧拉屈曲),这是一种同时包含泡沫整个微观结构的整体现象。在这种解释中,平台应力(即应力平台上的应力值)是与平衡分叉相关的特征值。尽管如此,我们的实验结果表明,应力平台始终伴随着非均质的两相应变场,与构型相变的发生一致。因此,我们认为平台应力是与达到极限点相关的麦克斯韦应力。 (泡沫孔的突然弯曲),一种局部现象,逐渐扫过泡沫的微观结构。在其他载荷情况下,包括沿横向的单轴压缩,机械响应不会表现出应力平稳状态,并且应力应变曲线单调硬化,而与泡沫的密度无关。即使对于密度最小的泡沫,应变场也保持均匀。我们使用实验结果来校准EPP泡沫的平均场模型。在此模型中,从理想化的,理想的周期性泡沫微切割中切下了由数个条组成的晶胞。单元格的条形尖端经历一组位移,仿射具有所应用的平均变形梯度,并使其自由旋转。晶胞的特征是使用了一些物理上有意义的材料和几何参数,对于任何给定的泡沫,都可以很容易地估算出其值。 ;临界密度泡沫的临界点;密度大于临界密度的泡沫的单调硬化应力-应变曲线。与临界点相关的临界指数与其他均场模型(例如流体的Van der Walls模型)相同,通过适当选择参数,该模型给出的预测与所有载荷情况下的实验结果均具有可比性。特别是,该模型给出了一个非凸应变能函数,其中(且仅在其中)实验表现出了一个平稳的应力场和一个两相应变场。我们得出结论,EPP泡沫的机械响应在大应变下受两种机理中的一种控制泡沫泡孔的高度:快速弯曲,导致非凸应变能函数,应力平稳期和两相应变场;弯曲或弯曲会导致凸形应变能函数,单调增加的应力和均匀的应变场。这一结论使我们能够解释一系列广泛的实验,其中用楔形冲头穿透了EPP泡沫试样。对于低密度泡沫,我们通过实验发现,机械响应在冲头穿透深度达到样品高度的40%时是线性的。我们推测,样品中的应变场由靠近尖端的区域中发生了相变的高应变相和远离尖端的区域中尚未发生相变的低应变相组成。发生。这两个区域之间由不连续的尖锐界面隔开。在测试过程中,我们使用DIC追踪尖锐界面的生长和扫描过程。通过理论上研究尖锐界面的自相似增长,我们根据实验结果预测了自相似范围内的线性响应。然后,我们将相同的理论应用于圆锥形冲头的情况,预测自相似状态下的二次响应,并通过使用锥形冲头进行实验来验证我们的预测。我们得出结论,在自相似状态下,机械响应完全取决于几何形状,并且仅取决于冲头的尺寸和低密度泡沫的高原应力。本文的第二部分,研究超薄材料的初始屈服金属膜(千分尺的厚度)。最近的实验表明,在具有恒定晶粒尺寸的自支撑金属膜中,初始屈服应力会随着膜的变薄而增加,它的峰值厚度约为100 nm,然后开始减小。这种反转(先硬化,然后软化)的尺寸效应带来了两个挑战:(1)无法用当前可用的模型来解释;(2)它似乎与JW Beams [1959]鲜为人知但引人注目的实验结果相矛盾。即使在厚度为20 nm的情况下,隆起试验中的尺寸效应也不会逆转。我们表明,通过考虑表面应力对初始屈服的影响,可以解释尺寸逆转效应并消除了矛盾。根据实验,我们还预测了膜的破坏模式会从延性转变为脆性,厚度达到100 nm左右。我们成功地将连续介质力学方法应用于薄至典型晶格参数100倍的膜这些方法在超小长度标度上的稳健性日益增长。

著录项

  • 作者

    Dai Xiangyu;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号