首页> 外文学位 >Mechanical response of polyether polyurethane foams under multiaxial stress and the initial yielding of ultrathin films.
【24h】

Mechanical response of polyether polyurethane foams under multiaxial stress and the initial yielding of ultrathin films.

机译:聚醚聚氨酯泡沫在多轴应力下的机械响应和超薄膜的初始屈服。

获取原文
获取原文并翻译 | 示例

摘要

In the first part of this thesis, we study the mechanical response of elastic polyether polyurethane (EPP) foams by means of experiments, theory, and modeling. The experiments include five loading cases: uniaxial compression along the rise direction; uniaxial compression along two mutually perpendicular transverse directions; uniaxial tension along the rise direction; shear combined with compression along the rise direction; and hydrostatic pressure combined with compression along the rise direction.;We use our experimental results to calibrate a mean-field model of EPP foams. In this model, a unit cell composed of several bars is cut off from an idealized, perfectly periodic foam microstrusture. The tips of the bars of the cell are subjected to a set of displacements affine with the applied mean deformation gradient, and left to rotate freely. The unit cell is characterized using a few physically meaningful material and geometric parameters whose values may be readily estimated for any given foam.;We verify that under uniaxial loading the model predicts configurational phase transitions, stress plateaus, and two-phase fields for low-density foams; a critical point for foams of a critical density; and monotonically hardening stress-strain curves for foams of density higher than the critical density. The critical exponents associated with the critical point are the same as in other mean-field models such as the Van der Walls model of a fluid.;We conclude that the mechanical response of EPP foams is dominated at large strains by either one of two mechanisms at the level of a foam cell: snap-through buckling, which leads to nonconvex strain energy functions, stress plateaus, and two-phase strain fields; or bending, which leads to convex strain energy functions, monotonically increasing stresses, and homogeneous strain fields.;This conclusion allows us to interpret an extensive series of experiments in which EPP foam specimens are penetrated with a wedge-shaped punch. For low-density foams, we find experimentally that the mechanical response is linear up to a penetration of the punch of about 40% of the height of the specimen. We surmise that the strain field in the specimen consists of a high-strain phase in a region close to the tip, where a phase transition has taken place, and a low-strain phase in a region far from the tip, where the phase transition is yet to take place. The two regions are separated by a sharp interface, where the strain is discontinuous. We use DIC to trace the sharp interface as it grows and sweeps through the specimen during a test.;In the second part of this thesis, we study the initial yielding of ultrathin metallic films (thickness of a fraction of a mum). Recent experiments indicate that in free-standing metallic films of constant grain size the initial yield stress increases as the film becomes thinner, it peaks for a thickness on the order of 100 nm, and then starts to decrease. This reversing (first hardening, then softening) size effect poses two challenges: (1) It cannot be explained using currently available models and (2) it appears to contradict the little-known but remarkable experimental results of J. W. Beams [1959], in which the size effect in bulge tests did not reverse even for a thickness of 20 nm.;We show that the reversing size effect can be explained and the contradiction dispelled by taking into account the effect of the surface stress on the initial yielding. We also predict that the mode of failure of a film changes from ductile to brittle for a thickness on the order of 100 nm, in accord with experiments. Our successful application of methods of continuum mechanics to films as thin as 100 times a typical lattice parameter adds to a growing realization of the robustness of these methods at ultrasmall length scales. (Abstract shortened by UMI.)
机译:在本文的第一部分,我们通过实验,理论和建模方法研究了弹性聚醚聚氨酯(EPP)泡沫的力学响应。实验包括五种载荷情况:沿上升方向的单轴压缩;沿轴向方向的单轴压缩;沿轴向方向的单轴压缩。沿两个相互垂直的横向方向的单轴压缩;沿上升方向的单轴张力;沿上升方向的剪切与压缩相结合; ;静水压力与沿上升方向的压缩相结合。;我们使用我们的实验结果来校准EPP泡沫的平均场模型。在该模型中,从理想化的,周期性的泡沫微托中切下了由数个条组成的晶胞。单元格的条形尖端经历一组与所施加的平均变形梯度有关的仿射位移,并使其自由旋转。晶胞使用一些物理上有意义的材料和几何参数来表征,这些参数和几何参数可以很容易地估计任何给定泡沫的值。我们验证了在单轴载荷下,该模型可以预测低相态的相变,应力平稳和两相场。密度泡沫;临界密度泡沫的临界点;密度大于临界密度的泡沫的单调硬化应力-应变曲线。与临界点相关的临界指数与其他平均场模型(例如流体的Van der Walls模型)相同;我们得出结论,EPP泡沫的机械响应在大应变下受两种机理之一控制在泡沫单元的水平上:咬合屈曲,导致非凸应变能函数,应力平稳和两相应变场;弯曲或弯曲会导致凸形应变能函数,单调增加的应力和均匀的应变场。该结论使我们能够解释一系列广泛的实验,其中用楔形冲头穿透EPP泡沫样品。对于低密度泡沫,我们通过实验发现,直到冲头的穿透深度约为样品高度的40%时,机械响应才是线性的。我们推测,样品中的应变场由靠近尖端的区域中发生了相变的高应变相和远离尖端的区域中的低应变相(相变)组成。尚未发生。这两个区域之间由不连续的尖锐界面隔开。在测试过程中,我们使用DIC来追踪尖锐界面的生长和扫描过程。在本论文的第二部分,我们研究了超薄金属膜的初始屈服(厚度仅为妈妈的一小部分)。最近的实验表明,在具有恒定晶粒尺寸的自支撑金属膜中,初始屈服应力会随着膜的变薄而增加,它的峰值厚度约为100 nm,然后开始减小。这种反转(先硬化,再软化)的尺寸效应带来了两个挑战:(1)无法用当前可用的模型来解释;(2)它似乎与JW Beams [1959]鲜为人知但引人注目的实验结果相矛盾。其中,即使在20 nm的厚度下,凸起试验中的尺寸效应也不会逆转。;我们表明,通过考虑表面应力对初始屈服的影响,可以解释尺寸逆转效应并消除了矛盾。我们还预测,根据实验,膜的破坏模式会从延性变为脆性,厚度约为100 nm。我们成功地将连续介质力学方法应用于薄膜的厚度是典型晶格参数的100倍,这使这些方法在超小长度尺度上的稳健性日益增长。 (摘要由UMI缩短。)

著录项

  • 作者

    Dai, Xiangyu.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Applied Mechanics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号