首页> 外文OA文献 >Visual navigation in unmanned air vehicles with simultaneous location and mapping (SLAM)
【2h】

Visual navigation in unmanned air vehicles with simultaneous location and mapping (SLAM)

机译:具有同时定位和地图绘制(SLAM)的无人驾驶飞机的视觉导航

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis focuses on the theory and implementation of visual navigation techniques for Autonomous Air Vehicles in outdoor environments. The target of this study is to fuse and cooperatively develop an incremental map for multiple air vehicles under the application of Simultaneous Location and Mapping (SLAM).Without loss of generality, two unmanned air vehicles (UAVs) are investigated for the generation of ground maps from current and a priori data. Each individual UAV is equipped with inertial navigation systems and external sensitive elements which can provide the possible mixture of visible, thermal infrared (IR) image sensors, with a special emphasis on the stereo digital cameras. The corresponding stereopsis is able to provide the crucial three-dimensional (3-D) measurements. Therefore, the visual aerial navigation problems tacked here are interpreted as stereo vision based SLAM (vSLAM) for both single and multiple UAVs applications.To begin with, the investigation is devoted to the methodologies of feature extraction. Potential landmarks are selected from airborne camera images as distinctive points identified in the images are the prerequisite for the rest.Feasible feature extraction algorithms have large influence over feature matching/association in 3-D mapping. To this end, effective variants of scale-invariant feature transform (SIFT) algorithms are employed to conduct comprehensive experiments on feature extraction for both visible and infrared aerial images.As the UAV is quite often in an uncertain location within complex and cluttered environments, dense and blurred images are practically inevitable. Thus, it becomes a challenge to find feature correspondences, which involves feature matching between 1st and 2nd image in the same frame, and data association of mapped landmarks and camera measurements. A number of tests with different techniques are conducted by incorporating the idea of graph theory and graph matching. The novel approaches, which could be tagged as classification and hypergraph transformation (HGTM) based respectively, have been proposed to solve the data association in stereo vision based navigation. These strategies are then utilised and investigated for UAV applicationwithin SLAM so as to achieve robust matching/association in highly cluttered environments.The unknown nonlinearities in the system model, including noise would introduce undesirable INS drift and errors. Therefore, appropriate appraisals on the pros and cons of various potential data filtering algorithms to resolve this issue are undertaken in order to meet the specific requirements of the applications. These filters within visual SLAM were put under investigation for data filtering and fusion of both single and cooperative navigation. Hence updated information required for construction and maintenance of a globally consistent map can be provided by using a suitable algorithm with the compromise between computational accuracy and intensity imposed by the increasing map size. The research provides an overview of the feasible filters, such as extended Kalman Filter, extended Information Filter, unscented Kalman Filter and unscented H Infinity Filter.As visual intuition always plays an important role for humans to recognise objects, research on 3-D mapping in textures is conducted in order to fulfil the purpose of both statistical and visual analysis for aerial navigation. Various techniques are proposed to smooth texture and minimise mosaicing errors during the reconstruction of 3-D textured maps with vSLAM for UAVs.Finally, with covariance intersection (CI) techniques adopted on multiple sensors, various cooperative and data fusion strategies are introduced for the distributed and decentralised UAVs for Cooperative vSLAM (C-vSLAM). Together with the complex structure of high nonlinear system models that reside in cooperative platforms, the robustness and accuracy of the estimations in collaborative mapping and location are achieved through HGTM association and communication strategies. Data fusion among UAVs and estimation for visual navigation via SLAM were impressively verified and validated in conditions of both simulation and real data sets.
机译:本文主要研究户外环境下自主飞行器视觉导航技术的理论与实现。这项研究的目标是在同时定位和制图(SLAM)的应用下融合并合作开发多架飞机的增量地图。在不失一般性的情况下,研究了两种无人飞机(UAV)来生成地面地图从当前和先验数据。每个无人机都配备有惯性导航系统和外部敏感元件,它们可以提供可见的热红外(IR)图像传感器的可能混合,特别着重于立体数码相机。相应的立体视能够提供关键的三维(3-D)测量。因此,这里解决的视觉空中导航问题被解释为针对单无人机和多无人机应用的基于立体视觉的SLAM(vSLAM)。首先,研究致力于特征提取的方法。从机载相机图像中选择潜在的地标,因为图像中识别出的独特点是其余图像的先决条件。可行的特征提取算法对3D映射中的特征匹配/关联有很大的影响。为此,采用尺度不变特征变换(SIFT)算法的有效变体对可见和红外航拍图像进行特征提取的综合实验。由于无人机通常在复杂而混乱的环境中处于不确定的位置,因此密集和模糊图像实际上是不可避免的。因此,寻找特征对应关系成为一个挑战,其中涉及同一帧中第一和第二图像之间的特征匹配,以及映射地标和相机测量值的数据关联。通过结合图论和图匹配的思想,使用不同的技术进行了许多测试。为了解决基于立体视觉的导航中的数据关联,提出了可以分别标记为分类和超图变换(HGTM)的新颖方法。然后将这些策略用于SLAM中的无人机应用并进行研究,以在高度混乱的环境中实现鲁棒的匹配/关联。系统模型中未知的非线性(包括噪声)会引入不良的INS漂移和误差。因此,针对各种潜在的数据过滤算法的优缺点进行了适当的评估,以解决此问题,以满足应用程序的特定要求。对视觉SLAM中的这些过滤器进行了研究,以进行数据过滤以及单导航和协作导航的融合。因此,可以通过使用适当的算法来提供构建和维护全局一致的地图所需的更新信息,该算法在计算精度和地图尺寸增加带来的强度之间进行折衷。研究概述了可行的滤波器,如扩展的卡尔曼滤波,扩展的信息滤波,无味的卡尔曼滤波和无味的H无限滤波。进行纹理处理是为了满足航空导航的统计和视觉分析的目的。针对无人机使用vSLAM重建3-D纹理图的过程中,提出了各种平滑纹理和最小化镶嵌误差的技术。最后,在多个传感器上采用协方差交点(CI)技术,针对分布式传感器引入了各种协作和数据融合策略以及用于协作式vSLAM(C-vSLAM)的分散式无人机。配合驻留在协作平台中的高非线性系统模型的复杂结构,通过HGTM关联和通信策略可以实现协作映射和位置估计的鲁棒性和准确性。在模拟和真实数据集的条件下,无人机之间的数据融合和通过SLAM进行视觉导航的估计都得到了令人印象深刻的验证。

著录项

  • 作者

    Li X;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号