首页> 外文OA文献 >Water, governance and human development variables in developing countries: multivariate inter-relationships analysis and statistical modelling using Bayesian networks
【2h】

Water, governance and human development variables in developing countries: multivariate inter-relationships analysis and statistical modelling using Bayesian networks

机译:发展中国家的水,治理和人类发展变量:使用贝叶斯网络进行多元相互关系分析和统计建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the last decades, we have assisted to an important expansion of the number of indicators for measuring the development of a country− from the GDP per capita, households’ consumption indicators, demographic and medical indicators, schooling rates to governance indexes. This has produced in a first time the development of composite indicators to explain and synthesise the spatial and temporal changes of these different indicators− the Human Development Index (HDI) and its adjusted versions, Multidimensional Poverty Index (MPI), or the Water Poverty Index (WPI), to provide policy makers simple figures to help them in their decisions. The main difficulty faced by the researchers was to explain complex behaviours through single indicators. This research develops a framework to explain and contribute to the better understanding of the relationships between the existing single and complex indicators in the domain of Water Supply and Sanitation (WSS) in Developing Countries. This framework is based on the Bayesian Networks modelling method (Castelletti & Soncini-Sessa, 2007a), (Giné Garriga et al., 2009), (Dondeynaz et al., 2013). In addition to building this analytical framework, this research also aims at measuring and analysing the distribution and the influence of Official Development Assistance (ODA) in recipient countries. The approach chosen is global, targeting cross-countries analysis and comparison to capture the principal key variables of water supply and sanitation coverage expansion and its benefits for the country development. Therefore, this research proposes a methodological framework using Bayesian models for analysing water supply and sanitation access levels together with governance, human development (education, health, and income), water resources, the uses of these resources and the ODA. The research outputs could support national decision making and/or donors’ strategies, in particular the European Union. Variables and data are collected at national country scale for 101 developing countries observations in a new database (WatSan4dev) for year 2004. Five country profiles are identified and ranged around five main thematic axes using multivariate and clustering analyses. The countries from profiles 4 and 5 were the least favoured in terms of development and access to WSS, therefore should benefit from ODA support. However, countries from profile 5 received rather low ODA inputs in 2004, possibly as shown from the models because of their relative instability and poor governance. The modelling approach is led by the principles of robustness and replicability and took into account data availability and nature using Bayesian Networks. It is found that WSS access is strongly associated to country development (+35 % probability change) that is first sensitive, as expected, to the income level. The urbanisation level is the second strong factor associated to development with the limit of slums development. Health care and advanced governance complete these key factors. Lastly, WSS is sensitive to ODA CI where high-level ODA is estimate to benefit first to poor (45%) and middle (34%) development countries at 79% probability. This modelling allowed, in addition, running probabilistic scenarios to test hypotheses and measure the probable changes on WSS and the development. The methodological process, the outputs of multivariate analysis, the five countries profiles, the Bayesian modelling as well as examples of scenarios are described and analysed. The reference date is first 2004. The analytical and modelling process is then applied to the 2000-2008 period.
机译:在过去的几十年中,我们已帮助扩大了衡量国家发展的指标数量,从人均GDP,家庭的消费指标,人口和医疗指标,入学率到治理指标。这首次产生了用于解释和综合这些不同指标的时空变化的综合指标,即人类发展指数(HDI)及其调整后的版本,多维贫困指数(MPI)或水贫困指数(WPI),为决策者提供简单的数字以帮助他们做出决策。研究人员面临的主要困难是通过单一指标来解释复杂行为。这项研究开发了一个框架,以解释并有助于更好地理解发展中国家供水和卫生(WSS)领域中现有单一指标和复杂指标之间的关系。该框架基于贝叶斯网络建模方法(Castelletti&Soncini-Sessa,2007a),(GinéGarriga等,2009),(Dondeynaz等,2013)。除了建立此分析框架外,本研究还旨在衡量和分析受援国官方发展援助(ODA)的分布及其影响。选择的方法是全球性的,以跨国分析和比较为目标,以掌握供水和卫生设施覆盖面扩大及其对国家发展的好处的主要关键变量。因此,本研究提出了一种使用贝叶斯模型的方法框架,用于分析供水,卫生设施的获取水平以及治理,人类发展(教育,健康和收入),水资源,这些资源的使用和官方发展援助。研究成果可以支持国家决策和/或捐助者的战略,特别是欧洲联盟。在2004年的新数据库(WatSan4dev)中,收集了101个发展中国家在全国国家范围内的变量和数据。使用多元和聚类分析,确定了五个国家概况,并围绕五个主要主题轴进行了分布。就发展和获得WSS而言,概况4和5中的国家是最不受欢迎的国家,因此应从官方发展援助中受益。但是,概况5的国家在2004年收到的官方发展援助投入相对较低,这可能是模型所显示的,因为它们相对不稳定且治理不善。该建模方法由健壮性和可复制性原则主导,并考虑了使用贝叶斯网络的数据可用性和性质。已经发现,WSS的获取与国家发展(+ 35%的概率变化)密切相关,正如预期的那样,国家发展首先对收入水平敏感。城市化水平是与贫民窟发展的局限性有关的第二个重要因素。卫生保健和先进治理完善了这些关键因素。最后,WSS对ODA CI很敏感,据估计,高水平的ODA首先以79%的概率首先惠及穷国(45%)和中等(34%)发展中国家。此外,该模型还允许运行概率方案来测试假设并衡量WSS和开发的可能变化。描述并分析了方法过程,多元分析的结果,五个国家的概况,贝叶斯模型以及情景实例。参考日期是2004年的第一天。然后将分析和建模过程应用于2000-2008年。

著录项

  • 作者

    Dondeynaz C;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号