首页> 外文OA文献 >INVESTIGATION OF BUBBLE DYNAMICS AND HEATING DURING FOCUSED ULTRASOUND INSONATION IN TISSUE-MIMICKING MATERIALS
【2h】

INVESTIGATION OF BUBBLE DYNAMICS AND HEATING DURING FOCUSED ULTRASOUND INSONATION IN TISSUE-MIMICKING MATERIALS

机译:仿组织材料中超声超音速过程中气泡动力学和加热的研究

摘要

The deposition of ultrasonic energy in tissue can cause tissue damage due to local heating. For pressures above a critical threshold, cavitation will occur in tissue and bubbles will be created. These oscillating bubbles can induce a much larger thermal energy deposition in the local region. Traditionally, clinicians and researchers have not exploited this bubble-enhanced heating since cavitation behavior is erratic and very difficult to control.The present work is an attempt to control and utilize this bubble-enhanced heating. First, by applying appropriate bubble dynamic models, limits on the asymptotic bubble size distribution are obtained for different driving pressures at 1 MHz. The size distributions are bounded by two thresholds: the bubble shape instability threshold and the rectified diffusion threshold. The growth rate of bubbles in this region is also given, and the resulting time evolution of the heating in a given insonation scenario is modeled. In addition, some experimental results have been obtained to investigate the bubble-enhanced heating in an agar and graphite based tissue- mimicking material. Heating as a function of dissolved gas concentrations in the tissue phantom is investigated. Bubble-based contrast agents are introduced to investigate the effect on the bubble-enhanced heating, and to control the initial bubble size distribution.The mechanisms of cavitation-related bubble heating are investigated, and a heating model is established using our understanding of the bubble dynamics. By fitting appropriate bubble densities in the ultrasound field, the peak temperature changes are simulated. The results for required bubble density are given. Finally, a simple bubbly liquid model is presented to estimate the shielding effects which may be important even for low void fraction during high intensity focused ultrasound (HIFU) treatment.
机译:超声能量在组织中的沉积会由于局部加热而引起组织损伤。对于高于临界阈值的压力,将在组织中发生气蚀并产生气泡。这些振荡的气泡会在局部区域引起更大的热能沉积。传统上,由于空化行为不稳定且很难控制,临床医生和研究人员并未利用这种气泡增强加热技术。本工作是试图控制和利用这种气泡增强加热技术的尝试。首先,通过应用适当的气泡动力学模型,获得了在1 MHz下不同驱动压力下渐近气泡尺寸分布的限制。尺寸分布受两个阈值限制:气泡形状不稳定性阈值和矫正扩散阈值。还给出了该区域中气泡的增长率,并模拟了在给定的声波情景下加热的时间演变。另外,已经获得一些实验结果来研究琼脂和石墨基组织模拟材料中的气泡增强加热。研究了加热作为组织模型中溶解气体浓度的函数。介绍了基于气泡的造影剂,以研究其对气泡增强加热的影响并控制初始气泡尺寸分布。研究了空化相关气泡加热的机理,并基于我们对气泡的理解建立了加热模型动力学。通过在超声场中拟合适当的气泡密度,可以模拟峰值温度变化。给出了所需气泡密度的结果。最后,提出了一个简单的气泡状液体模型来评估屏蔽效果,该屏蔽效果即使对于高强度聚焦超声(HIFU)治疗期间的低空隙率也可能很重要。

著录项

  • 作者

    Yang Xinmai;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_us
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号