首页> 外文OA文献 >THE INVERSE EIGENPROBLEM OF CENTROSYMMETRIC MATRICES WITH A SUBMATRIX CONSTRAINT AND ITS APPROXIMATION
【2h】

THE INVERSE EIGENPROBLEM OF CENTROSYMMETRIC MATRICES WITH A SUBMATRIX CONSTRAINT AND ITS APPROXIMATION

机译:具有子矩阵约束的重对称矩阵的本征逆问题及其逼近

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we first consider the existence of and the general expression for thesolution to the constrained inverse eigenproblem defined as follows: given a set of complex n-vectorsfxigmi=1 and a set of complex numbers f¸igmi=1, and an s-by-s real matrix C0, find an n-by-n realcentrosymmetric matrix C such that the s-by-s leading principal submatrix of C is C0, and fxigmi=1and f¸igmi=1 are the eigenvectors and eigenvalues of C respectively. We then concerned with the bestapproximation problem for the constrained inverse problem whose solution set is nonempty. Thatis, given an arbitrary real n-by-n matrix ˜ C, find a matrix C which is the solution to the constrainedinverse problem such that the distance between C and ˜ C is minimized in the Frobenius norm. We givean explicit solution and a numerical algorithm to the best approximation problem. Some illustrativeexperiments are also presented.
机译:在本文中,我们首先考虑约束反特征问题的解的存在性和一般表达式,其定义如下:给定一组复数n-向量sfxigmi = 1和一组复数f¸igmi= 1,并且s -s-s实矩阵C0,找到一个n-n实心对称矩阵C,使得C的s-by-s前导主子矩阵为C0,并且fxigmi = 1和f¸igmi= 1是C的特征向量和特征值分别。然后,我们关注解集为非空的约束逆问题的最佳逼近问题。即,给定任意的实数n×n矩阵〜C,找到矩阵C,该矩阵C是约束逆问题的解决方案,使得在Frobenius范数中C与〜C之间的距离最小。我们给出了最佳逼近问题的显式解和数值算法。还提供了一些说明性的实验。

著录项

  • 作者

    ZHENG-JIAN BAI; 白正简;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号