首页> 美国政府科技报告 >Two Counterexamples Related to the Kreiss Matrix Theorem
【24h】

Two Counterexamples Related to the Kreiss Matrix Theorem

机译:与Kreiss矩阵定理相关的两个反例

获取原文

摘要

The modern version of the Kreiss matrix theorem states that matrix norm A(sup n)= or < esK (for all n = or > 0) if A is an s X s matrix satisfying a resolvent condition with respect to the unit disk with constant K. In this paper we show for any fixed K = or > pi + 1 that the upper bound esK is sharp in the sense that a linear dependence on the dimension s is the best possible. An analogous result is obtained for the continuous version of the Kreiss matrix theorem, which states that Norm exp (tA) = or < esK (for all t = or > 0) if A is an s X s matrix satisfying a resolvent condition with respect to the left half plane with constant K.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号