首页> 美国政府科技报告 >Comparative Study of Structural Most Specific Generalizations Used in Machine Learning.
【24h】

Comparative Study of Structural Most Specific Generalizations Used in Machine Learning.

机译:机器学习中结构最具体推广的比较研究。

获取原文

摘要

The paper compares three basic approaches of learning most specific generalizations (MSGs) in a unifying framework. By reducing them to each other it shows that even in some simple subset of first-order logic, it is NP-hard to decide if there exists a consistent inductive generalization. It then reviews a polynomial approach, learning most specific ij-determinate Horn clauses, within this framework and shows that even the relaxation from ij-determinate Horn clauses to determinate Horn clauses leads to exponentially longer MSGs. (Copyright (c) GMD 1992.)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号