首页> 美国政府科技报告 >Improving the Sustainability of Asphalt Pavements through Developing a Predictive Model with Fundamental Material Properties
【24h】

Improving the Sustainability of Asphalt Pavements through Developing a Predictive Model with Fundamental Material Properties

机译:通过开发具有基本材料特性的预测模型提高沥青路面的可持续性

获取原文

摘要

This study presents the numerical implementation and validation of general constitutive relationships for describing the nonlinear behavior of asphalt concrete mixes. These constitutive relationships incorporate nonlinear viscoelasticity and viscoplasticity to predict the recoverable and irrecoverable responses, respectively. The nonlinear viscoelastic deformation is modeled using Schaperys model; while the irrecoverable component is represented using Perzynas viscoplasticity theory with an extended Drucker-Prager yield surface and plastic potential that is modified to capture the distinction between the compressive and extension behavior of asphalt mixes. The nonlinear viscoelastic and viscoplastic model is represented in a numerical formulation and implemented in a finite element (FE) code using a recursive-iterative algorithm for nonlinear viscoelasticity and the radial return algorithm for viscoplasticity. Then, the model is used to analyze the nonlinear viscoelastic and viscoplastic behavior of asphalt mixtures subjected to single creep recovery tests at different stress levels and temperatures. This experimental analysis includes the separation of the viscoelastic and viscoplastic strain components. Based on this separation, a systematic procedure is presented for the identification of the material parameters associated with the nonlinear viscoelastic and viscoplastic constitutive equations. Finally, the model is applied and verified against a set of creep-recovery tests on hot mix asphalt at different stress levels and temperatures.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号