首页> 美国政府科技报告 >Recovering pointwise values of discontinuous data within spectral accuracy
【24h】

Recovering pointwise values of discontinuous data within spectral accuracy

机译:在光谱精度内恢复不连续数据的逐点值

获取原文

摘要

The pointwise values of a function, f(x), can be accurately recovered either from its spectral or pseudospectral approximations, so that the accuracy solely depends on the local smoothness of f in the neighborhood of the point x. Most notably, given the equidistant function grid values, its intermediate point values are recovered within spectral accuracy, despite the possible presence of discontinuities scattered in the domain. (Recall that the usual spectral convergence rate decelerates otherwise to first order, throughout). To this end, a highly oscillatory smoothing kernel is employed in contrast to the more standard positive unit-mass mollifiers. In particular, post-processing of a stable Fourier method applied to hyperbolic equations with discontinuous data, recovers the exact solution modulo a spectrally small error. Numerical examples are presented.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号