首页> 美国政府科技报告 >Quantifying parameters for Bayesian prior assumptions when estimating the probability of failure of software
【24h】

Quantifying parameters for Bayesian prior assumptions when estimating the probability of failure of software

机译:在估计软件故障概率时,对贝叶斯先验假设的参数进行量化

获取原文

摘要

Software reliability has become increasingly important, especially in life-critical situations. The ability to measure the results of testing and to quantify software reliability is needed. If this is accomplished, a certain minimum amount of reliability for a piece of software can be specified, and testing and/or other analysis may be done until that minimum number has been attained. There are many models for estimating software reliability. The accuracy of these models has been challenged and many revisions for the models and recalibration techniques have been devised. Of particular interest is the method of estimating the probability of failure of software when no failures have yet occurred in its current version as described by Miller. This model uses black box testing with formulae based on Bayesian estimation. The focus is on three interrelated issues: estimating the probability of failure when testing has revealed no errors; modifying this estimation when the input use distribution does not match the test distribution; and combining the results from random testing with other relevant information to obtain a possibly more accurate estimate of the probability of failure. Obtaining relevant information about the software and combining the results for a better estimate for the Miller model are discussed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号