首页> 美国政府科技报告 >Learning Assumptions for Compositional Verification
【24h】

Learning Assumptions for Compositional Verification

机译:学习假设的组成验证

获取原文

摘要

Compositional verification is a promising approach to addressing the state explosion problem associated with model checking. One compositional technique advocates proving properties of a system by checking properties of its components in an assume-guarantee style. However, the application of this technique is difficult because it involves non-trivial human input. This paper presents a novel framework for performing assume-guarantee reasoning in an incremental and fully automated fashion. To check a component against a property, our approach generates assumptions that the environment needs to satisfy for the property to hold. These assumptions are then discharged on the rest of the system. Assumptions are computed by a learning algorithm. They are initially approximate, but become gradually more precise by means of counterexamples obtained by model checking the component and its environment, alternately. This iterative process may at any stage conclude that the property is either true or false in the system. We have implemented our approach in the LTSA tool and applied it to the analysis of a NASA system.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号