首页> 外文期刊>Formal Methods in System Design >Automatic symbolic compositional verification by learning assumptions
【24h】

Automatic symbolic compositional verification by learning assumptions

机译:通过学习假设自动进行符号组成验证

获取原文
获取原文并翻译 | 示例

摘要

Compositional reasoning aims to improve scalability of verification tools by reducing the original verification task into subproblems. The simplification is typically based on assume-guarantee reasoning principles, and requires user guidance to identify appropriate assumptions for components. In this paper, we propose a fully automated approach to compositional reasoning that consists of automated decomposition using a hypergraph partitioning algorithm for balanced clustering of variables, and discovering assumptions using the L~* algorithm for active learning of regular languages. We present a symbolic implementation of the learning algorithm, and incorporate it in the model checker NuSmv. In some cases, our experiments demonstrate significant savings in the computational requirements of symbolic model checking.
机译:组合推理旨在通过将原始验证任务简化为子问题来提高验证工具的可伸缩性。简化通常基于假设保证推理原理,并且需要用户指导以标识组件的适当假设。在本文中,我们提出了一种组成推理的全自动方法,该方法包括使用超图划分算法对变量进行平衡聚类的自动分解,以及使用L〜*算法主动学习常规语言的假设。我们提出学习算法的符号实现,并将其合并到模型检查器NuSmv中。在某些情况下,我们的实验表明,在符号模型检查的计算要求上可节省大量资金。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号