首页> 外文期刊>ACM transactions on software engineering and methodology >Learning Weighted Assumptions for Compositional Verification of Markov Decision Processes
【24h】

Learning Weighted Assumptions for Compositional Verification of Markov Decision Processes

机译:学习加权假设以进行马尔可夫决策过程的组成验证

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic models are widely deployed in various systems. To ensure their correctness, verification techniques have been developed to analyze probabilistic systems. We propose the first sound and complete learning-based compositional verification technique for probabilistic safety properties on concurrent systems where each component is an Markov decision process. Different from previous works, weighted assumptions are introduced to attain completeness of our framework. Since weighted assumptions can be implicitly represented by multiterminal binary decision diagrams (MTBDDs), we give an L~*-based learning algorithm for MTBDDs to infer weighted assumptions. Experimental results suggest promising outlooks for our compositional technique.
机译:概率模型广泛部署在各种系统中。为了确保其正确性,已经开发了验证技术来分析概率系统。对于每个组件都是马尔可夫决策过程的并发系统,我们针对概率安全特性提出了第一种健全且基于学习的完整成分验证技术。与以前的工作不同,引入了加权假设以实现我们框架的完整性。由于加权假设可以由多端二进制决策图(MTBDD)隐式表示,因此我们为MTBDD提供了一种基于L〜*的学习算法,以推断加权假设。实验结果表明我们的合成技术前景广阔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号