首页> 美国政府科技报告 >Tandem Reduction/Cyclization of O-Nitrophenyl Propargyl Alcohols-A Novel Synthesis of 2- & 2,4-Disubstituted Quinolines and Application to the Synthesis of Streptonigrin; Doctoral thesis
【24h】

Tandem Reduction/Cyclization of O-Nitrophenyl Propargyl Alcohols-A Novel Synthesis of 2- & 2,4-Disubstituted Quinolines and Application to the Synthesis of Streptonigrin; Doctoral thesis

机译:O-硝基苯基炔丙醇的串联还原/环化 - 新型2-和2,4-二取代喹啉的合成及其在链霉素合成中的应用;博士论文

获取原文

摘要

The quinoline ring system is a common structural component of a wide variety of natural products with highly desirable biological activity, including antimalarial agents such as quinine, chloroquine and mefloquine, as well as antitumor agents such as dynemicin A, luotonin A, and camptothecin. The synthesis of the highly effective, yet prohibitively toxic, antitumor antibiotic streptonigrin is targeted in this research. A concise, convergent synthesis of this antitumor agent will pave the way for an expeditous survey of streptonigrin analogues that have similar pharmaceutical value with diminished toxicity. Our retrosynthetic plan required the development of new methodology to form the heterocyclic ring of quinoline, in a manner that would allow the utilization of palladium-catalyzed coupling of complex aryl triflates to form the tetracyclic structure of this highly functionalized natural product. A method has been developed to synthesize complex, substituted quinolines in a facile manner through the utilization of o-nitrophenyl propargyl alcohols. Through either direct lithium acetylide addition of available alkynes, or Sonogashira coupling to terminal propargyl alcohols, the assembly of complex internal propargyl alcohols has directly lead to 2-aryl-, 2-alkenyl and 2- alkylquinolines via reductive cyclization under mildly acid conditions. This reductive cyclization takes advantage of the facile Meyer-Schuster rearrangement of resonance-stabilized o-anilinopropargyl alcohols to o- aminochalcones, which cyclize to quinoline in a one-pot procedure. This work has also examined the use of this reductive cyclization to form 2- pyridylquinolines, however such cyclization has repeatedly led to the 4- quinolone. The mechanism of such an anomalous cyclization has been studied. Although the mechanism has not been definitively identified, several potential pathways have been examined, with evidence favoring an acid-catalyzed, non- Meyer-Schuster rearrangement.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号