首页> 美国政府科技报告 >Modeling Finite Deformations in Trigonal Ceramic Crystals with Lattice Defects.
【24h】

Modeling Finite Deformations in Trigonal Ceramic Crystals with Lattice Defects.

机译:具有晶格缺陷的三角陶瓷晶体的有限变形模型。

获取原文

摘要

A model is developed for thermomechanical behavior of defective, low-symmetry ceramic crystals such as alpha-corundum. Kinematics resolved are nonlinear elastic deformation, thermal expansion, dislocation glide, mechanical twinning, and residual lattice strains associated with eigenstress fields of defects such as dislocations and stacking faults. Multiscale concepts are applied to describe effects of twinning on effective thermoelastic properties. Glide and twinning are thermodynamically irreversible, while free energy accumulates with geometrically necessary dislocations associated with strain and rotation gradients, statistically stored dislocations, and twin boundaries. The model is applied to describe single crystals of corundum. Hardening behaviors of glide and twin systems from the total density of dislocations accumulated during basal slip are quantified for pure and doped corundum crystals. Residual lattice expansion is predicted from nonlinear elasticity and dislocation line and stacking fault energies.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号