首页> 美国政府科技报告 >Tribochemical Studies of Hard Carbon Films as a Function of Load and Environment
【24h】

Tribochemical Studies of Hard Carbon Films as a Function of Load and Environment

机译:硬碳膜作为载荷和环境函数的摩擦化学研究

获取原文

摘要

Hydrogen-free, hard carbon thin films are exciting material coatings candidates as solid lubricants. Two examples, ultrananocrystalline diamond (UNCD) and tetrahedral amorphous carbon (ta-C), are particularly promising, because their exceptional mechanical and tribological properties are combined with extremely smooth surfaces. However, their tribological performance can be seriously affected by variations in humidity. The mechanisms controlling the friction and wear of UNCD and ta-C are not well understood because of a lack of physical understanding of the surface interactions. The aim of this thesis is to elucidate the fundamental mechanisms of friction and wear in UNCD and ta-C films. An experimental protocol is defined to examine the relationship between the sliding environment, tribological performance, and mechanical and chemical changes to the films. Self-mated reciprocating tribometry in controlled environments measure UNCD and ta-C friction as a function of load and relative humidity (RH). Scanning white light interferometry measures the post-mortem height profile. Finally, chemical changes inside the wear track are characterized by x-ray photoelectron emission microscopy combined with near-edge x-ray absorption fine structure (X-PEEM-NEXAFS) spectromicroscopy. Results for ta-C and UNCD show that both films perform better at lower loads or with higher amounts of RH. Previous hypotheses for this suggested that lubrication for these films either comes in the form of graphitization (converting carbon from diamond-type bonding to graphite-like bonding) or by passivation (the termination of broken carbon bonds by species in the environment, such as water). All spectroscopic evidence shows no evidence of graphitization, but support the passivation hypothesis. Furthermore, the spectroscopy shows that the passivation is in the form of hydroxyl groups, most likely from water.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号