首页> 美国政府科技报告 >ON THE STRUCTURE AND THE HAUSDORFF DIMENSION OF THE SUPPORT OF A CLASS OF DISTRIBUTION FUNCTIONS INDUCED BY ERGODIC SEQUENCES
【24h】

ON THE STRUCTURE AND THE HAUSDORFF DIMENSION OF THE SUPPORT OF A CLASS OF DISTRIBUTION FUNCTIONS INDUCED BY ERGODIC SEQUENCES

机译:关于ERGODIC序列引起的一类分布函数支持的结构和HaUsDORFF维数

获取原文

摘要

In this note we examine the distribution function of the random variable Z = Σ, Xi D-1 when the random variables X1,X2••• form a stationary ergodici-1 sequence and each X. takes on integer values running from 0 to D-l. We show that the distribution function will be a step function, or a continuous and purely singular function, or else a linear function of its argument. The form of the distribution function is related to the entropy rate of the random sequence. We discuss this relationship and also the relationship of entropy rate to the concept of Hausdorff dimension.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号