首页> 美国政府科技报告 >Application of Symbolic Regression to Electrochemical Impedance Spectroscopy Data for Lubricating Oil Health Evaluation.
【24h】

Application of Symbolic Regression to Electrochemical Impedance Spectroscopy Data for Lubricating Oil Health Evaluation.

机译:符号回归在电化学阻抗谱数据润滑油健康评价中的应用。

获取原文

摘要

The authors have applied an advanced set of auto-regressive tools for identifying potentially complex, linear and non-linear relationships in data, wherein the underlying physical relationships are not well described. In this paper these tools and techniques are described in detail, and the results of the application of these tools to evaluation of diesel engine lubricating oil health (based on electrochemical impedance spectroscopy data) is detailed. It is demonstrated that highly accurate models can be constructed which take as input features derived from diesel engine lubricating oil electrochemical impedance spectroscopy data and output estimates of traditional laboratory based oil analysis parameters. The electrochemical impedance spectroscopy and laboratory analytical data used are from a field deployment of oil condition sensors on several long-haul class 8 diesel trucks. The dataset was divided into training and test datasets and goodness of fit metrics were calculated to evaluate model performance. Models were successfully generated for nitration, soot content, total base number, total acid number, and viscosity.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号