首页> 美国政府科技报告 >Least Squares Estimation of Conditionally Heteroscedastic Autoregressions
【24h】

Least Squares Estimation of Conditionally Heteroscedastic Autoregressions

机译:有条件异方差自回归的最小二乘估计

获取原文

摘要

The least squares estimate of the autoregressive parameter of a conditionally heteroscedastic autoregression is consistent and asymptotically normal. Failure to recognize conditional heteroscedasticity results in the underestimation of the variance of the least squares estimate, and in extreme cases, this effect can be substantial. The least squares estimate is not asymptotically distribution free, rather, the asymptotic distribution depends on the form of the conditional heteroscedasticity. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号