首页> 美国政府科技报告 >Windowed Fast Transversal Filters Adaptive Algorithms with Normalization
【24h】

Windowed Fast Transversal Filters Adaptive Algorithms with Normalization

机译:具有归一化的加窗快速横向滤波器自适应算法

获取原文

摘要

New fixed-order fast transversal filter (FTF) algorithms are introduced for several common windowed recursive-least-squares (RLS) adaptive-filtering criteria. O(N) operations per data point, where N is the filter order, are required by the new algorithms. These algorithms are characterized by two different time-variant scaling techniques that are applied to the internal quantities, leading to normalized and overnormalized FTF algorithms. It is this scaling that distinguishes the new algorithms from the multitude of fast-RLS-Kalman or fast-RLS-Kalman-type algorithms that have appeared in the literature for these same windowed RLS criteria, and which use no normalization or scaling of the internal algorithmic quantities. The overnormalized fast transversal filters have the lowest possible computational requirements for any of the considered windows. The normalized FTF algorithms are then introduced, at a modest increase in computational requirements, to significantly mitigate the numerical deficiencies inherent in all most-efficient RLS solutions, thus illustrating an interesting and important tradeoff between the growth rate of numerical errors and computational requirements for all fixed-order algorithms. Performance of the algorithms, as well as some illustrative tracking comparisons for the various windows, is verified via simulation. Keywords: Reprints; Linear filtering. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号