首页> 外文期刊>IEEE Transactions on Signal Processing >Normalized sliding window constant modulus and decision-directed algorithms: a link between blind equalization and classical adaptive filtering
【24h】

Normalized sliding window constant modulus and decision-directed algorithms: a link between blind equalization and classical adaptive filtering

机译:归一化滑动窗口恒定模量和决策算法:盲均衡与经典自适应滤波之间的联系

获取原文
获取原文并翻译 | 示例

摘要

By minimizing a deterministic criterion of the constant modulus (CM) type or of the decision-directed (DD) type, we derive normalized stochastic gradient algorithms for blind linear equalization (BE) of QAM systems. These algorithms allow us to formulate CM and DD separation principles, which help obtain a whole family of CM or DD BE algorithms from classical adaptive filtering algorithms. We focus on the algorithms obtained by using the affine projection adaptive filtering algorithm (APA). Their increased convergence speed and ability to escape from local minima of their cost function make these algorithms very promising for BE applications.
机译:通过最小化恒定模量(CM)类型或决策导向(DD)类型的确定性准则,我们导出了QAM系统的盲线性均衡(BE)的归一化随机梯度算法。这些算法使我们能够制定CM和DD分离原理,这有助于从经典的自适应滤波算法中获得整个CM或DD BE算法。我们专注于通过使用仿射投影自适应滤波算法(APA)获得的算法。它们提高的收敛速度和逃避其成本函数的局部极小值的能力,使得这些算法在BE应用中非常有前途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号