首页> 美国政府科技报告 >Adaptive Finite Element Methods for Parabolic Systems in One- and Two-Space Dimensions
【24h】

Adaptive Finite Element Methods for Parabolic Systems in One- and Two-Space Dimensions

机译:一维和二维空间中抛物方程组的自适应有限元方法

获取原文

摘要

Adaptive finite element methods are given for solving initial boundary value problems for vector systems of parabolic partial differential equations in one- and two-space dimensions. One-dimension systems are discretized using piecewise linear finite element approximations in space and a backward difference code for stiff ordinary differential systems in time. A spatial error estimate is calculated using piecewise quadratic approximations that employ nodal superconvergence to increase computational efficiency. This error estimate is used to move and refine the finite element mesh in order to equidistribute a measure of the total spatial error and to satisfy a prescribed error tolerance. Ordinary differential equations for the spatial error estimate and the mesh motion are integrated in time using the same backward difference software that is used to determine the finite element solution. Two-dimension systems are discretized using piecewise bilinear finite element approximations in space and backward difference software in time. A spatial error estimate is calculated using piecewise cubic approximations that take advantage of nodal superconvergence. This error estimate is used to locally refine a stationary finite element mesh in order to satisfy a prescribed spatial error tolerance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号