首页> 美国政府科技报告 >Analysis of Reduced Hessian Methods for Constrained Optimization
【24h】

Analysis of Reduced Hessian Methods for Constrained Optimization

机译:减少Hessian约束优化方法的分析

获取原文

摘要

This document studies the convergence properties of reduced Hessian successive quadratic programming for equality constrained optimization. The method uses a backtracking line search, and updates an approximation to the reduced Hessian of the Lagrangian by means of the BFGS formula. Two merit functions are considered for the line search: the l1 function and the Fletcher exact penalty function. We give conditions under which local and superlinear convergence is obtained, and also prove a global convergence result. The analysis allows the initial reduced Hessian approximation to be any positive definite matrix, and does not assume that the iterates converge, or that the matrices are bounded. The effects of a second order correction step, a watchdog procedure and of the choice of null space basis are considered. This work can been seen as an extension of the well known results of Powell (1976) for unconstrained optimization to reduced Hessian methods. (KR)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号