首页> 外文学位 >New approaches to a reduced Hessian successive quadratic programming method for large-scale process optimization.
【24h】

New approaches to a reduced Hessian successive quadratic programming method for large-scale process optimization.

机译:用于大规模过程优化的简化的Hessian连续二次规划方法的新方法。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes new methods for a reduced Hessian Successive Quadratic Programming (rSQP) algorithm for large-scale process optimization. Over the past fifteen years, the Successive Quadratic Programming algorithm and the rSQP algorithm in particular, has been applied to a wide variety of problems in process engineering. Designed for large NLP problems with few degrees of freedom, the rSQP approach requires only projected second derivative information which can often be approximated efficiently with quasi-Newton update formulae. The enhancements described in this thesis improve the efficiency, performance, and reliability of these algorithms and preserve the desirable convergence properties shown in earlier studies.;A trust region approach is implemented to improve the convergence of the rSQP algorithm for problems which have poor initial curvature information. This new approach restricts the step size of the Newton direction to move the initial search directions towards a steepest descent direction. This work is extended by modifying the solution strategy for the Quadratic Programming (QP) subproblem. This new adjoint approach allows for the partial solution of the QP subproblem which reduces the solution time for the overall rSQP algorithm for some problems. A large set of test problems are then solved with the new algorithm in the GAMS system. The results show that the rSQP algorithm is both robust and efficient.;To overcome the combinatorial expense of solving the QP subproblem with an active-set method, we introduce an interior-point. The basic primal-dual interior point method is described and results are shown for some medium sized industrial test problems. Some larger test problems are then presented which offer a comparison of two active-set method QP solvers, QPKWIK and QPOPT, with the interior-point solver. This comparison shows that an interior point method can solve large highly-constrained problems faster than traditional active set methods.;Finally, a new approach to implementing the rSQP algorithm is described. This approach takes advantage of some object-oriented programming concepts in the C++ programming language to make the rSQP code more understandable and maintainable than the current, procedure-oriented, Fortran 77 code. The goals of this new implementation are outlined and some examples of C++ objects for the rSQP algorithm are described.
机译:本文介绍了用于大规模过程优化的简化的Hessian连续二次规划(rSQP)算法的新方法。在过去的十五年中,连续二次编程算法,特别是rSQP算法,已被应用于过程工程中的各种问题。 rSQP方法设计用于具有很少自由度的大型NLP问题,仅需要计划的二阶导数信息,而这些信息通常可以通过拟牛顿更新公式有效地近似。本文所描述的增强功能提高了这些算法的效率,性能和可靠性,并保留了先前研究中显示的理想收敛特性。;采用信任域方法来改善rSQP算法对初始曲率较差的问题的收敛性信息。这种新方法限制了牛顿方向的步长,以将初始搜索方向移向最陡的下降方向。通过修改二次编程(QP)子问题的解决方案策略,可以扩展这项工作。这种新的辅助方法允许部分解决QP子问题,从而减少了整体rSQP算法解决某些问题的时间。然后使用GAMS系统中的新算法解决了大量测试问题。结果表明,rSQP算法既鲁棒又高效。为了克服使用主动集方法求解QP子问题的组合费用,我们引入了一个内点。描述了基本的原始对偶内点法,并显示了一些中等规模的工业测试问题的结果。然后,提出了一些较大的测试问题,这些问题比较了两种主动设置方法QP求解器QPKWIK和QPOPT与内点求解器。这种比较表明,内部点方法比传统的主动集方法能够更快地解决大型的高约束问题。最后,描述了一种实现rSQP算法的新方法。这种方法利用C ++编程语言中的一些面向对象的编程概念,使rSQP代码比当前的面向过程的Fortran 77代码更易于理解和维护。概述了此新实现的目标,并描述了用于rSQP算法的C ++对象的一些示例。

著录项

  • 作者

    Ternet, David J.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Chemical.;Operations Research.;Computer Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号