首页> 美国政府科技报告 >Combustion Instability Mechanisms in a Pressure-coupled Gas-gas Coaxial Rocket Injector.
【24h】

Combustion Instability Mechanisms in a Pressure-coupled Gas-gas Coaxial Rocket Injector.

机译:压力耦合气 - 气同轴火箭喷油器燃烧不稳定机理。

获取原文

摘要

An investigation of the instability mechanism present in a laboratory rocket combustor is performed using computational fluid dynamics (CFD) simulations. Three cases are considered which show different levels of instability experimentally. Computations reveal three main aspects to the instability mechanism, the timing of the pressure pulses, increased mixing due to the baroclinic torque, and the presence of unsteady tribrachial flame. The stable configuration shows that fuel is able to flow into the combustor continuously allowing continuous heat release. The unstable configuration shows that a disruption in the fuel flow into the combustor allows the heat release to move downstream and new fuel to accumulate in the combustor without immediately burning. Once the large amounts of fuel in the combustor burn there is rapid rise in pressure which coincides with the timing of the acoustic wave in the combustor. The two unstable cases show different levels of instability and different reignition mechanism.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号