首页> 外文期刊>Physica, A. Statistical mechanics and its applications >Attaining and maintaining criticality in a neuronal network model
【24h】

Attaining and maintaining criticality in a neuronal network model

机译:在神经网络模型中获得和维持临界值

获取原文
获取原文并翻译 | 示例

摘要

We propose a cellular automaton model for neuronal networks that combines short-term synaptic plasticity with long-term metaplasticity. We investigate how these two mechanisms contribute to attaining and maintaining operation at the critical point. We find that short-term plasticity, represented in the model by synaptic depression and synaptic recovery, is sufficient to allow the system to attain the critical state, if the level of plasticity is properly chosen. However, it is not sufficient to maintain the criticality if the system is perturbed. But the long time scale change in the short-term plasticity, a change in the way synaptic efficacy is modified, allows the system to recover from perturbation. Working together, these two time scales of plasticity could help the system to attain and maintain criticality, leading to a self-organized critical state.
机译:我们提出了一种神经元网络的细胞自动机模型,该模型结合了短期突触可塑性和长期代谢性。我们研究了这两种机制如何在临界点上实现和维持运行。我们发现,如果适当选择可塑性水平,则在模型中以突触抑制和突触恢复表示的短期可塑性足以使系统达到临界状态。但是,如果系统受到干扰,仅维持临界状态是不够的。但是短期可塑性的长时间尺度变化,突触功效改变的方式发生了变化,使系统从微扰中恢复过来。这两个可塑性时间尺度共同作用,可以帮助系统达到并维持临界状态,从而导致自组织临界状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号