...
首页> 外文期刊>Neural computation >From Synaptic Interactions to Collective Dynamics in Random Neuronal Networks Models: Critical Role of Eigenvectors and Transient Behavior
【24h】

From Synaptic Interactions to Collective Dynamics in Random Neuronal Networks Models: Critical Role of Eigenvectors and Transient Behavior

机译:从突触相互作用到随机神经网络模型中的集体动力学:特征向量和瞬态行为的关键作用

获取原文
获取原文并翻译 | 示例
           

摘要

The study of neuronal interactions is at the center of several big collaborativeneuroscience projects (including the Human Connectome Project,the Blue Brain Project, and the Brainome) that attempt to obtain a detailedmap of the entire brain. Under certain constraints, mathematicaltheory can advance predictions of the expected neural dynamics basedsolely on the statistical properties of the synaptic interaction matrix. Thiswork explores the application of free random variables to the study oflarge synaptic interaction matrices. Besides recovering in a straightforwardway known results on eigenspectra in types of models of neuralnetworks proposed by Rajan and Abbott (2006), we extend them to heavy-tailed distributions of interactions. More important, we analyticallyderive the behavior of eigenvector overlaps, which determine thestability of the spectra. We observe that on imposing the neuronal excitation/inhibition balance, despite the eigenvalues remaining unchanged,their stability dramatically decreases due to the strong nonorthogonalityof associated eigenvectors. This leads us to the conclusion that understandingthe temporal evolution of asymmetric neural networks requiresconsidering the entangled dynamics of both eigenvectors and eigenvalues,which might bear consequences for learning and memory processesin these models. Considering the success of free random variables theoryin a wide variety of disciplines, we hope that the results presentedhere foster the additional application of these ideas in the area of brainsciences.
机译:神经元相互作用的研究是几个大型合作神经科学项目(包括“人类Connectome项目”,“ Blue Brain项目”和“ Brainome”)的中心,这些项目试图获取整个大脑的详细地图。在某些约束下,数学理论可以仅基于突触相互作用矩阵的统计特性来推进预期神经动力学的预测。这项工作探索了自由随机变量在大型突触相互作用矩阵研究中的应用。除了在Rajan和Abbott(2006)提出的神经网络模型类型中以本征谱的简单方式恢复已知结果之外,我们还将其扩展为相互作用的重尾分布。更重要的是,我们分析性地推导了特征向量重叠的行为,这决定了光谱的稳定性。我们观察到,在施加神经元激发/抑制平衡时,尽管特征值保持不变,但由于相关特征向量的强非正交性,其稳定性急剧下降。这导致我们得出这样的结论:理解非对称神经网络的时间演化需要考虑特征向量和特征值的纠缠动力学,这可能会对这些模型中的学习和记忆过程产生影响。考虑到自由随机变量理论在各种学科中的成功,我们希望这里提出的结果能促进这些思想在脑科学领域的进一步应用。

著录项

  • 来源
    《Neural computation》 |2020年第2期|395-423|共29页
  • 作者单位

    Marian Smoluchowski Institute of Physics and Mark Kac Complex SystemsResearch Center Jagiellonian University PL 30-348 Krakow Poland;

    Center for Complex Systems and Brain Sciences Escuela de Ciencia y Tecnologia Universidad Nacional de San Martin San Martin 1650 Buenos Aires Argentina and Consejo Nacional de Investigaciones Cientificas y Tecnologicas 1650 Buenos Aires Argentina;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号