首页> 外文期刊>Physica status solidi, B. Basic research >Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off
【24h】

Application of external tensile and compressive strain on a single layer InAs/GaAs quantum dot via epitaxial lift-off

机译:通过外延剥离在单层InAs / GaAs量子点上施加外部拉伸和压缩应变

获取原文
获取原文并翻译 | 示例
           

摘要

Tensile and compressive strains via epitaxial lift-off (ELO) techniques were applied on single-layer InAs/GaAs quantum dots (QDs). At low temperatures, due to the difference in thermal expansion coefficients of the ELO film and host substrate, the ELO QDs film bonded to Si and MgO substrates experienced tensile and compressive strain, respectively. At 13K, we observed that the photoluminescence (PL) spectra of the ELO film bonded to MgO blueshifts by 10meV while the ELO film bonded to Si redshifts by 8.5meV with respect to the ground state of the as-grown sample. The estimated tensile and compressive strains at this temperature were determined by monitoring the valence-band splitting of the GaAs PL peak. The film bonded to Si has a light hole (lh) to heavy hole (hh) energy separation of 4.6meV, resulting to values of strain, ε{lunate}=6.049×10~(-4) and stress, X=0.746×10~(-3)kbar or 74.6MPa. On the other hand, the film bonded on MgO has an lh-hh energy separation of 3.7meV, giving ε{lunate}=4.8×10~(-4) and X=0.24×10~(-3)kbar or 24MPa. Furthermore, we also observed a reversal of the PL intensity peak between the ground and excited-state transition of the film bonded on silicon only. A plateau-like feature between the two peaks also emerged, indicating the presence of another optical transition, which is enhanced due to application of tensile strain. We associated this peak to the 1LO-phonon replica of the PL transition resulting from the excited state. Based on these observations, this reversal is most likely attributed to the reduction of the carrier-relaxation mechanism from excited states to the ground-state transition upon the application of tensile strain. Finally, the result of this study showed the efficacy of the ELO technique as an alternative way of introducing variable tensile and compressive strain in the InAs/GaAs QD's heterostructure.
机译:通过外延剥离(ELO)技术的拉伸应变和压缩应变被应用于单层InAs / GaAs量子点(QD)。在低温下,由于ELO膜和主体基板的热膨胀系数不同,因此与Si和MgO基板粘合的ELO QDs膜分别经历了拉伸应变和压缩应变。在13K时,我们观察到,与生长的样品的基态相比,键合到MgO的ELO膜的光致发光(PL)光谱蓝移了10meV,而键合到Si的ELO膜的红移了8.5meV。通过监测GaAs PL峰的价带分裂,可以确定在该温度下估计的拉伸和压缩应变。结合到Si上的薄膜的轻孔(lh)至重孔(hh)的能量分离为4.6meV,从而导致应变ε{lunate} = 6.049×10〜(-4)和应力值X = 0.746× 10〜(-3)kbar或74.6MPa另一方面,结合在MgO上的膜的lh-hh能量间隔为3.7meV,给出ε{lunate} = 4.8×10〜(-4)和X = 0.24×10〜(-3)kbar或24MPa。此外,我们还观察到仅在硅上键合的薄膜的基态和激发态跃迁之间的PL强度峰反转。在两个峰之间也出现了平台状的特征,表明存在另一个光学跃迁,由于施加了拉应变而增强了该跃迁。我们将此峰与激发态导致的PL跃迁的1LO-声子副本相关联。基于这些观察,这种逆转最可能归因于在施加拉伸应变时载流子松弛机制从激发态到基态跃迁的减少。最后,这项研究的结果显示了ELO技术的有效性,它是在InAs / GaAs QD异质结构中引入可变拉伸和压缩应变的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号