首页> 外文期刊>Channels >The gating mechanism of the bacterial mechanosensitive channel MscL revealed by molecular dynamics simulations From tension sensing to channel opening
【24h】

The gating mechanism of the bacterial mechanosensitive channel MscL revealed by molecular dynamics simulations From tension sensing to channel opening

机译:通过分子动力学模拟揭示细菌机械敏感通道MscL的门控机制,从张力感测到通道打开

获取原文
获取原文并翻译 | 示例
           

摘要

One of the ultimate goals of the study on mechanosensitive (MS) channels is to understand the biophysical mechanisms of how the MS channel protein senses forces and how the sensed force induces channel gating. The bacterial MS channel MscL is an ideal subject to reach this goal owing to its resolved 3D protein structure in the closed state on the atomic scale and large amounts of electrophysiological data on its gating kinetics. However, the structural basis of the dynamic process from the closed to open states in MscL is not fully understood. In this study, we performed molecular dynamics (MD) simulations on the initial process of MscL opening in response to a tension increase in the lipid bilayer. To identify the tension-sensing site(s) in the channel protein, we calculated interaction energy between membrane lipids and candidate amino acids (AAs) facing the lipids. We found that Phe78 has a conspicuous interaction with the lipids, suggesting that Phe78 is the primary tension sensor of MscL. Increased membrane tension by membrane stretch dragged radially the inner (TM1) and outer (TM2) helices of MscL at Phe78, and the force was transmitted to the pentagon-shaped gate that is formed by the crossing of the neighboring TM1 helices in the inner leaflet of the bilayer. The radial dragging force induced radial sliding of the crossing portions, leading to a gate expansion. Calculated energy for this expansion is comparable to an experimentally estimated energy difference between the closed and the first subconductance state, suggesting that our model simulates the initial step toward the full opening of MscL. The model also successfully mimicked the behaviors of a gain of function mutant (G22N) and a loss of function mutant (F78N), strongly supporting that our MD model did simulate some essential biophysical aspects of the mechano-gating in MscL.
机译:机械敏感(MS)通道研究的最终目标之一是了解MS通道蛋白如何感测力以及感测到的力如何诱导通道门控的生物物理机制。细菌MS通道MscL是达到此目标的理想对象,这是因为其在原子尺度上处于闭合状态时解析的3D蛋白结构,以及有关其门控动力学的大量电生理数据。但是,尚未完全了解MscL中从关闭状态到打开状态的动态过程的结构基础。在这项研究中,我们对MscL打开的初始过程进行了分子动力学(MD)模拟,以响应脂质双层的张力增加。为了确定通道蛋白中的张力传感位点,我们计算了膜脂质与面对脂质的候选氨基酸(AA)之间的相互作用能。我们发现Phe78与脂质明显相互作用,表明Phe78是MscL的主要张力传感器。通过膜拉伸而增加的膜张力在Phe78处径向拖曳了MscL的内部(TM1)和外部(TM2)螺旋,力被传递到五角形门,该门由内部小叶中相邻的TM1螺旋的交叉形成双层的。径向阻力引起交叉部分的径向滑动,从而导致浇口膨胀。计算得出的这种膨胀的能量可以与实验估算的闭合和第一个亚导电状态之间的能量差相比较,这表明我们的模型模拟了朝MscL完全打开的初始步骤。该模型还成功地模拟了功能突变体(G22N)和功能缺失突变体(F78N)的行为,强烈支持我们的MD模型确实模拟了MscL中机械门控的一些重要生物物理方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号