首页> 外文学位 >Molecular dynamics studies of the *gating mechanism of a mechanosensitive channel.
【24h】

Molecular dynamics studies of the *gating mechanism of a mechanosensitive channel.

机译:机械敏感通道的门控机制的分子动力学研究。

获取原文
获取原文并翻译 | 示例

摘要

Mechanosensitive channels are integral membrane proteins that gate in response to tension in the membrane. One such channel, MscL, poses an especially interesting challenge to modelers both because the channel is activated by membrane tension alone, and because the transition to the open state necessarily involves an unusually large conformational change from a leakproof closed channel to a large, non-specific pore 3 nm across. With the availability of an x-ray crystal structure of MscL, molecular dynamics simulations were carried out which have contributed to our understanding of the sequence of motions involved in MscL gating, suggested the likely form of the open state, and identified residues crucial in setting MscL's tension threshold. The gating process was investigated through simulations of the bare protein under conditions of constant surface tension. Under a range of conditions the transmembrane helices flattened as the pore widened. Simulations taking into account the nonhomogeneous distribution of stresses in the membrane have shown what parts of the channel are involved in sensing membrane tension. Steered Molecular Dynamics simulations were used to investigate how forces arising from membrane tension induce gating of the channel. A fully expanded state was obtained that revealed the mechanism for transducing membrane forces into channel opening. The expanded state agrees well with proposed models of MscL gating, in that it entails an iris-like expansion of the pore accompanied by tilting of the transmembrane helices. The channel was most easily opened when force was applied predominantly on the cytoplasmic side of MscL. Comparison of simulations in which gating progressed to varying degrees identified residues that pose steric hindrance to channel opening. MscL can also be gated in the absence of applied membrane tension through the introduction of molecules that change the membrane's intrinsic curvature. To test whether the gating can be explained by changes in the lateral pressure distribution within the membrane, molecular dynamics simulations of membranes mimicking the experimental conditions were performed. The lateral pressure profiles calculated from these simulations show how changes in membrane composition alter the membrane stress distribution, providing a physical mechanism for MscL gating.
机译:机械敏感通道是完整的膜蛋白,可响应膜中的张力进行门控。一个这样的通道MscL对建模人员提出了特别有趣的挑战,因为该通道仅由膜张力激活,并且因为向开放状态的过渡必然涉及从防漏的封闭通道到大的非接触通道的异常大的构象变化。比孔径3 nm。利用MscL的X射线晶体结构,进行了分子动力学模拟,这有助于我们理解MscL门控所涉及的运动顺序,提出了可能的开放状态形式,并确定了对固化至关重要的残基MscL的张力阈值。通过模拟在恒定表面张力条件下的裸蛋白来研究门控过程。在一定范围的条件下,跨膜螺旋随着孔的扩大而变平。考虑到膜中应力的非均匀分布的模拟表明,通道的哪些部分参与了膜张力的检测。操纵分子动力学模拟用于研究膜张力产生的力如何诱导通道的门控。获得了完全膨胀的状态,揭示了将膜力转换为通道开口的机制。扩张状态与提出的MscL门控模型非常吻合,因为它伴随着跨膜螺旋的倾斜,导致孔的虹膜状扩张。当主要在MscL的细胞质侧施加力时,通道最容易打开。选通进行到不同程度的模拟比较结果确定了对通道开放造成空间障碍的残基。在没有施加膜张力的情况下,也可以通过引入改变膜固有曲率的分子来控制MscL。为了测试门控是否可以通过膜内侧向压力分布的变化来解释,对模拟实验条件的膜进行了分子动力学模拟。通过这些模拟计算得出的侧向压力曲线显示了膜成分的变化如何改变膜应力分布,从而为MscL门控提供了物理机制。

著录项

  • 作者

    Gullingsrud, Justin Robert.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Biophysics.;Cellular biology.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号