...
首页> 外文期刊>European Biophysics Journal >Molecular dynamics study on protein-water interplay in the mechanogating of the bacterial mechanosensitive channel MscL
【24h】

Molecular dynamics study on protein-water interplay in the mechanogating of the bacterial mechanosensitive channel MscL

机译:细菌力学敏感通道MscL机械化过程中蛋白质-水相互作用的分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

One of the goals of mechanosensitive channel (MSC) studies is to understand the underlying molecular and biophysical mechanisms of the mechano-gating process from force sensing to gate opening. We focus on the latter process and investigate the role of water in the bacterial MSC MscL, which is activated by membrane tension. We analyze the interplay between water and the gate-constituting amino acids, Leu19-Gly26, through molecular dynamics simulations. To highlight the role of water, specifically hydration of the gate, in MscL gating, we restrain lateral movements of the water molecules along the water-vapor interfaces at the top and bottom of the vapor bubble, plugging the closed gate. The gating behaviors in this model and the normal MscL model, in which water movements are unrestrained, are compared. In the normal model, increased membrane tension breaks the hydrogen bond between Leu19 and Val 23 of the inner helix, exposing the backbone carbonyl oxygen of Leu19 to the water-accessible lumen side of the gate. Associated with this activity, water comes to access the vapor region and stably interacts with the carbonyl oxygen to induce a dewetting to wetting transition that facilitates gate expansion toward channel opening. By contrast, in the water-restrained model, carbonyl oxygen is also exposed, but no further conformational changes occur at the gate. This suggests that gate opening relies on a conformational change initiated by wetting. The penetrated water weakens the hydrophobic interaction between neighboring transmembrane inner helices called the "hydrophobic lock" by wedging into the space between their interacting portions.
机译:机械敏感通道(MSC)研究的目标之一是了解从力感测到门打开的机械门控过程的潜在分子和生物物理机制。我们着重于后一个过程,并研究了水在细菌MSC MscL中的作用,该细菌被膜张力激活。我们通过分子动力学模拟分析了水和门组成氨基酸Leu19-Gly26之间的相互作用。为了突出水在MscL浇口中的作用,特别是浇口的水合作用,我们限制了水分子沿着气泡顶部和底部的水蒸气界面的横向运动,从而堵塞了关闭的浇口。比较了该模型和正常MscL模型中水运动不受限制的门控行为。在正常模型中,增加的膜张力会破坏内部螺旋的Leu19和Val 23之间的氢键,从而使Leu19的骨架羰基氧暴露于浇口的水可及内腔侧。与此活动相关的是,水进入蒸气区域并稳定地与羰基氧相互作用,引起去湿到湿润的转变,这有利于栅极向沟道开口的扩展。相比之下,在水约束模型中,羰基氧也被暴露,但在浇口处未发生进一步的构象变化。这表明开门依赖于由润湿引发的构象变化。渗透的水通过楔入它们相互作用部分之间的空间,削弱了相邻跨膜内部螺旋之间的疏水相互作用,称为“疏水锁”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号