首页> 外文期刊>SIAM Journal on Matrix Analysis and Applications >ON THE ORDERING OF SPECTRAL RADIUS PRODUCT r(A)r(AD) VERSUS r(A~2D) AND RELATED APPLICATIONS
【24h】

ON THE ORDERING OF SPECTRAL RADIUS PRODUCT r(A)r(AD) VERSUS r(A~2D) AND RELATED APPLICATIONS

机译:谱半径乘积r(A)r(AD)对r(A〜2D)的排序及其相关应用

获取原文
获取原文并翻译 | 示例

摘要

For a nonnegative matrix A and real diagonal matrix D, two known inequalities on the spectral radius, r(A~2D~2) > r(AD)~2 and r(A)r(AD~2)≥ r(AD)~2, leave. open the questio of what determines the order of r(A~2D~2) with respect to r(A)r(AD~2). This is a special case of broad class of problems that arise repeatedly in ecological and evolutionary dynamics. Here, sufficien conditions are found on A that determine orders in either direction. For a diagonally symmetrizable nonnegative matrix A with all positive eigenvalues and nonnegative D, r(à~2D) ≤r(A) r(AD). The reverse holds if all of the eigenvalues of A are negative besides the Perron root. This is particular case of the more general result that r(A[(l-m) r(B) I + mB]D) is monotonic in m whe all non-Perron eigenvalues of A have the same sign-decreasing for positive signs and increasing fc negative signs, for symmetrizable nonnegative A and B that commute. Commuting matrices includ the Kronecker products A, B ∈{?L_i=1~M_i~(ii)}, t_i ∈ {0,1,2,...}, which comprise a class for applicatio of these results. This machinery allows analysis of the sign of ?/?m_j r({?_i~L=1[(l-m_i).r(A_i)I_i + m_iA_i]}D). The eigenvalue sign conditions also provide lower or upper bounds to the harmoni mean of the expected sojourn times of Markov chains. These, inequalities appear in the asymptoti growth rates of viral quasispecies, models for the evolution of dispersal in random environments, an the evolution of site-specific.mutation rates over the entire genome.
机译:对于非负矩阵A和实对角矩阵D,光谱半径上的两个已知不等式r(A〜2D〜2)> r(AD)〜2和r(A)r(AD〜2)≥r(AD) 〜2,离开。打开确定r(A〜2D〜2)相对于r(A)r(AD〜2)的顺序的问题。这是在生态和进化动力学中反复出现的各种问题的特例。在这里,在A上找到足以确定任一方向顺序的条件。对于具有所有正特征值和非负D的对角对称非负矩阵A,r(à〜2D)≤r(A)r(AD)。如果A的所有特征值除Perron根外均为负,则相反。这是更普遍的结果的特殊情况,即r(A [(lm)r(B)I + mB] D)在m中是单调的,而A的所有非Perron特征值均具有相同的正负号递减符号并递增。 fc负号,用于对称的非负A和B通勤。通勤矩阵包括Kronecker乘积A,B∈{?L_i = 1〜M_i〜(ii)},t_i∈{0,1,2,...},其中包括一类适用于这些结果的类。该机制允许分析?/?m_j r({?_ i〜L = 1 [(l-m_i).r(A_i)I_i + m_iA_i]} D)的特征值符号条件还提供了下限或上限这些不等式出现在病毒准种的渐近生长速率,随机环境中的扩散演化模型,整个基因组中特定位点突变率的演化中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号