...
首页> 外文期刊>Sensor Review >FEM simulation of platinum-based microhotplate using different dielectric membranes for gas sensing applications
【24h】

FEM simulation of platinum-based microhotplate using different dielectric membranes for gas sensing applications

机译:气体传感应用中使用不同介电膜的铂基微热板的有限元模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose - The purpose of this paper is to help reduce power consumption by using platinum-based microhotplate with different dielectric membranes SiO2 and Si3N4 for gas sensing applications, and to develop platinum lift-off process using DC sputtering method for fabrication of platinum resistor. Design/methodology/approach - Semiconductor gas sensors normally require high power consumption because of their elevated operating temperature 300-600C. Considering the thermal resistant and sensitive characteristics of metal platinum as well as heat and electricity insulating characteristics of SiO2, Si3N4 and combination of both, a kind of the Si-substrate microhotplate was designed and simulated using ANSYS 10.0 tool. Thermal oxidation of Si wafer was carried out to get a 1.0?IT/ITm thick SiO2 layer. Pt deposition on oxidized silicon substrate by lift-off was carried out using DC sputtering technique. Findings - The platinum-based microhotplate requires 31.3-70.5?mW power to create the temperature 348-752C for gas sensing applications. The SiO2 membrane can operate the gas sensitive film at higher temperature than the Si3N4 and combination of both the membranes at same power consumption. The paper also presents the FEM simulation of different heating elements like nichrome and tantalum and its comparison to platinum for microhotplate applications. Originality/value - Both the simulation and experimental work provides the low cost, high yield and repeatability in realization of microhotplate. The design and simulation work provides the better selection of heating elements and dielectric membranes. The developed experimental process provides the easy fabrication of platinum resistors using DC sputtering technique.
机译:目的-本文的目的是通过在气体传感应用中使用具有不同介电膜SiO2和Si3N4的铂基微热板来帮助降低功耗,并利用直流溅射方法开发铂剥离工艺来制造铂电阻。设计/方法/方法-半导体气体传感器通常需要较高的功耗,因为它们的工作温度会升高300-600C。考虑到金属铂的耐热和敏感特性以及SiO2,Si3N4的隔热和电绝缘特性,以及两者的组合,使用ANSYS 10.0工具设计并模拟了一种Si衬底微热板。对硅片进行热氧化,得到厚度为1.0?IT / ITm的SiO2层。使用DC溅射技术通过剥离在氧化硅基板上沉积Pt。发现-铂基微热板需要31.3-70.5?mW的功率才能为气体传感应用产生348-752C的​​温度。 SiO2膜可以在比Si3N4更高的温度下操作气敏膜,并且在相同的功耗下将两个膜组合在一起。本文还介绍了不同加热元件(如镍铬合金和钽)的有限元模拟,并将其与微加热板应用中的铂进行比较。原创性/价值-仿真和实验工作都为实现微孔板提供了低成本,高产量和可重复性。设计和仿真工作为加热元件和介电膜提供了更好的选择。所开发的实验过程可使用直流溅射技术轻松制造铂电阻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号