首页> 外文期刊>IEEE sensors journal >Adaptive Robust Federal Kalman Filter for Multisensor Fusion Positioning Systems of Intelligent Vehicles
【24h】

Adaptive Robust Federal Kalman Filter for Multisensor Fusion Positioning Systems of Intelligent Vehicles

机译:用于智能汽车多传感器融合定位系统的自适应鲁棒联邦卡尔曼滤波器

获取原文
获取原文并翻译 | 示例

摘要

Multisensor fusion positioning is an important technology for achieving high-precision positioning of intelligent vehicles in complex road scenes. However, the existing fusion positioning algorithms are difficult to guarantee the positioning accuracy and robustness of intelligent vehicles in uncertain abnormal noise interference environments. Therefore, this article proposes an adaptive robust federated Kalman filter based on student#x2019;s t-distribution (ARFKF-ST). In this method, to better describe the positioning system with heavy-tailed non-Gaussian noise under uncertain interference, a hierarchical Gaussian state-space system model is constructed based on the student#x2019;s t-distribution. Meanwhile, consider that complex and variable noise interference can exacerbate the uncertainty of the system, leading to the fluctuation of noise parameters in the traditional Kalman recursive process. Therefore, the variational Bayesian inference method (VB) is used to estimate the state and noise parameters of subsystems in real time and online, thereby improving the adaptive performance of the algorithm to abnormal noise interference. In addition, a diagonally weighted fusion strategy based on state independence is designed to estimate global positioning information, so as to eliminate the effect of disturbed subsystems on the localization performance of other subsystems. The simulation and experimental results show that the ARFKF-ST has stronger abnormal noise suppression performance and filtering stability and can ensure positioning accuracy and the robust performance of intelligent vehicles under different levels of abnormal noise pollution and interference intensity.
机译:多传感器融合定位是实现智能车辆在复杂道路场景下高精度定位的重要技术。然而,现有的融合定位算法难以保证智能车辆在不确定的异常噪声干扰环境下的定位精度和鲁棒性。因此,本文提出了一种基于学生 t 分布的自适应鲁棒联邦卡尔曼滤波 (ARFKF-ST)。该方法为了更好地描述不确定干扰下具有重尾非高斯噪声的定位系统,基于学生的 t 分布构建了分层高斯状态-空间系统模型。同时,考虑到复杂多变的噪声干扰会加剧系统的不确定性,导致传统卡尔曼递归过程中噪声参数的波动。因此,采用变分贝叶斯推理法(VB)对子系统的状态和噪声参数进行实时和在线估计,从而提高算法对异常噪声干扰的自适应性能。此外,设计了一种基于状态独立性的对角加权融合策略来估计全局定位信息,从而消除受干扰子系统对其他子系统定位性能的影响。仿真和实验结果表明,ARFKF-ST具有更强的异常噪声抑制性能和滤波稳定性,能够保证定位精度和智能车辆在不同程度的异常噪声污染和干扰强度下的鲁棒性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号