首页> 外文期刊>International Journal of Turbomachinery, Propulsion and Power >Advanced Gas Turbine Cooling for the Carbon-Neutral Era
【24h】

Advanced Gas Turbine Cooling for the Carbon-Neutral Era

机译:碳中和时代的先进燃气轮机冷却

获取原文
获取原文并翻译 | 示例

摘要

In the coming carbon-neutral era, industrial gas turbines (GT) will continue to play an important role as energy conversion equipment with high thermal efficiency and as stabilizers of the electric power grid. Because of the transition to a clean fuel, such as hydrogen or ammonia, the main modifications will lie with the combustor. It can be expected that small and medium-sized gas turbines will burn fewer inferior fuels, and the scope of cogeneration activities they are used for will be expanded. Industrial gas turbine cycles including CCGT appropriate for the carbon-neutral era are surveyed from the viewpoint of thermodynamics. The use of clean fuels and carbon capture and storage (CCS) will inevitably increase the unit cost of power generation. Therefore, the first objective is to present thermodynamic cycles that fulfil these requirements, as well as their verification tests. One conclusion is that it is necessary to realize the oxy-fuel cycle as a method to utilize carbon-heavy fuels and biomass and not generate NOx from hydrogen combustion at high temperatures. The second objective of the authors is to show the required morphology of the cooling structures in airfoils, which enable industrial gas turbines with a higher efficiency. In order to achieve this, a survey of the historical development of the existing cooling methods is presented first. CastCool REG; and wafer and diffusion bonding blades are discussed as turbine cooling technologies applicable to future GTs. Based on these, new designs already under development are shown. Most of the impetus comes from the development of aviation airfoils, which can be more readily applied to industrial gas turbines because the operation will become more similar. Double-wall cooling (DWC) blades can be considered for these future industrial gas turbines. It will be possible in the near future to fabricate the DWC structures desired by turbine cooling designers using additive manufacturing (AM). Another conclusion is that additively manufactured DWC is the best cooling technique for these future gas turbines. However, at present, research in this field and the data generated are scattered, and it is not yet possible for heat transfer designers to fabricate cooling structures with the desired accuracy.
机译:在即将到来的碳中和时代,工业燃气轮机(GT)将继续作为高热效率的能量转换设备和电网的稳定器发挥重要作用。由于向氢气或氨气等清洁燃料的过渡,主要的修改将取决于燃烧器。可以预期,中小型燃气轮机将燃烧更少的劣质燃料,其用于热电联产活动的范围将扩大。从热力学的角度对适用于碳中和时代的工业燃气轮机循环(包括CCGT)进行了调查。清洁燃料和碳捕集与封存(CCS)的使用将不可避免地增加发电的单位成本。因此,第一个目标是提出满足这些要求的热力学循环,以及它们的验证测试。一个结论是,有必要实现氧燃料循环作为一种利用碳重燃料和生物质的方法,而不是在高温下氢燃烧产生NOx。作者的第二个目标是展示翼型中冷却结构所需的形态,这使工业燃气轮机具有更高的效率。为了实现这一目标,首先对现有冷却方法的历史发展进行了综述。CastCool & REG;讨论了晶圆和扩散键合叶片作为适用于未来GT的涡轮冷却技术。基于这些,展示了已经在开发中的新设计。大部分推动力来自航空翼型的发展,航空翼型可以更容易地应用于工业燃气轮机,因为操作将变得更加相似。双壁冷却 (DWC) 叶片可以考虑用于这些未来的工业燃气轮机。在不久的将来,将有可能使用增材制造 (AM) 制造涡轮冷却设计人员所需的 DWC 结构。另一个结论是,增材制造的DWC是这些未来燃气轮机的最佳冷却技术。然而,目前,该领域的研究和产生的数据是分散的,传热设计人员还不可能制造出具有所需精度的冷却结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号