首页> 外文期刊>Journal of Intelligent Manufacturing >Development of adaptive safety constraint by predicting trajectories of closest points between human and co-robot
【24h】

Development of adaptive safety constraint by predicting trajectories of closest points between human and co-robot

机译:通过预测人与协作机器人之间最近点的轨迹来开发自适应安全约束

获取原文
获取原文并翻译 | 示例

摘要

Safety is a critical component for human-robot cohabitation. The control barrier function (CBF) provides an effective tool to build up the constraint and ensure the safety of human-robot interaction. However, since the human and robot keep moving during human-robot interaction, the closest points between parts of them also change. Especially, the human trajectories are not known in prior, which may cause the above safety constraint to fail. In this paper, we construct the safe constraints based on discrete control barrier function (DCBF) by redefining the distance between each link of the robot and each part of the human body as the distance between two line segments in the space. In addition, the look-backward-and-forward strategy is applied to update the neural network model for predicting of human's motion trajectory effectively. Meanwhile, the root mean square estimation error is included in the safe constraints as the metric of uncertainty to compensate the estimation error of the predicted trajectory. Combining the discrete-time control Lyapunov function, a comprehensive control method under human-robot-coexistence environment is formed. The trajectory of a human's right arm collected by Qualisys capture system. The experiment are set up by integrating above testbed with a virtual KUKA iiwa model built by MATLAB. The results show that the robot can maintain a safe distance from the human when the DCBF-based constraints with prediction information are used, which verifies the effectiveness of the proposed method.
机译:安全是人机共处的关键组成部分。控制屏障功能(CBF)为建立约束和确保人机交互的安全性提供了有效的工具。然而,由于人类和机器人在人机交互过程中不断移动,因此它们各部分之间的最近点也会发生变化。特别是,人类的轨迹在先验中是未知的,这可能会导致上述安全约束失效。本文基于离散控制势垒函数(DCBF)构建了安全约束,将机器人各环节与人体各部位之间的距离重新定义为空间中两条线段之间的距离。此外,还应用了前瞻策略来更新神经网络模型,以有效地预测人体的运动轨迹。同时,将均方根估计误差作为不确定度指标纳入安全约束条件,以补偿预测轨迹的估计误差。结合离散时间控制Lyapunov函数,形成了人机共存环境下的综合控制方法。Qualisys捕获系统收集的人类右臂的轨迹。该实验是通过将上述测试平台与 MATLAB 构建的虚拟 KUKA iiwa 模型集成来设置的。结果表明,当使用基于DCBF的带有预测信息的约束时,机器人能够与人类保持安全距离,验证了所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号