首页> 外文期刊>Nano letters >Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm
【24h】

Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm

机译:根据氧化应激范式比较环境纳米粒子和人造纳米粒子诱导细胞毒性的能力

获取原文
获取原文并翻译 | 示例

摘要

Nanomaterial properties differ from those bulk materials of the same composition, allowing them to execute novel activities. A possible downside of these capabilities is harmful interactions with biological systems, with the potential to generate toxicity. An approach to assess the safety of nanomaterials is urgently required. We compared the cellular effects of ambient ultrafine particles with manufactured titanium dioxide (TiO2), carbon black, fullerol, and polystyrene (PS) nanoparticles (NPs). The study was conducted in a phagocytic cell line ( RAW 264.7) that is representative of a lung target for NPs. Physicochemical characterization of the NPs showed a dramatic change in their state of aggregation, dispersibility, and charge during transfer from a buffered aqueous solution to cell culture medium. Particles differed with respect to cellular uptake, subcellular localization, and ability to catalyze the production of reactive oxygen species (ROS) under biotic and abiotic conditions. Spontaneous ROS production was compared by using an ROS quencher (furfuryl alcohol) as well as an NADPH peroxidase bioelectrode platform. Among the particles tested, ambient ultrafine particles (UFPs) and cationic PS nanospheres were capable of inducing cellular ROS production, GSH depletion, and toxic oxidative stress. This toxicity involves mitochondrial injury through increased calcium uptake and structural organellar damage. Although active under abiotic conditions, TiO2 and fullerol did not induce toxic oxidative stress. While increased TNF-alpha production could be seen to accompany UFP-induced oxidant injury, cationic PS nanospheres induced mitochondrial damage and cell death without inflammation. In summary, we demonstrate that ROS generation and oxidative stress are a valid test paradigm to compare NP toxicity. Although not all materials have electronic configurations or surface properties to allow spontaneous ROS generation, particle interactions with cellular components are capable of generating oxidative stress.
机译:纳米材料的特性不同于具有相同组成的那些散装材料,从而使它们能够执行新颖的活动。这些功能的可能缺点是与生物系统的有害相互作用,可能产生毒性。迫切需要一种评估纳米材料安全性的方法。我们将环境超细颗粒与人造二氧化钛(TiO2),炭黑,富勒醇和聚苯乙烯(PS)纳米颗粒(NP)的细胞效应进行了比较。该研究是在吞噬细胞系(RAW 264.7)中进行的,该细胞系代表NP的肺靶标。在从缓冲水溶液转移到细胞培养基的过程中,NP的理化特性显示了其聚集,分散性和电荷状态的巨大变化。在生物和非生物条件下,细胞吸收,亚细胞定位以及催化产生活性氧(ROS)的能力各不相同。使用ROS淬灭剂(糠醇)和NADPH过氧化物酶生物电极平台比较了自发ROS的产生。在测试的颗粒中,环境超细颗粒(UFP)和阳离子PS纳米球能够诱导细胞ROS产生,GSH耗竭和有毒的氧化应激。这种毒性涉及通过增加钙摄取和结构性细胞器损伤而引起的线粒体损伤。尽管在非生物条件下具有活性,但TiO2和富勒醇不会引起毒性氧化应激。虽然可以看到增加的TNF-α产生伴随着UFP诱导的氧化剂损伤,但阳离子PS纳米球却诱导了线粒体损伤和细胞死亡而无炎症。总之,我们证明了ROS的产生和氧化应激是比较NP毒性的有效测试范例。虽然并非所有材料都具有允许自发产生ROS的电子构型或表面特性,但与细胞成分的颗粒相互作用能够产生氧化应激。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号