首页> 外文期刊>Mechatronics: The Science of Intelligent Machines >Optimal motion planning and control of a nonholonomic spherical robot using dynamic programming approach: simulation and experimental results
【24h】

Optimal motion planning and control of a nonholonomic spherical robot using dynamic programming approach: simulation and experimental results

机译:基于动态规划方法的非完整球形机器人的最优运动规划与控制:仿真与实验结果

获取原文
获取原文并翻译 | 示例
           

摘要

Optimal motion planning and control of a nonholonomic spherical mobile robot is studied. Dynamic Programming (DP) as a direct and online approach is used to navigate the robot in an environment with/without obstacles. The optimal trajectory, which corresponds to the minimum cost, is determined in the case of presence of obstacles in the environment, and the robot can move towards the target optimally, without colliding with obstacles. DP yields optimal control inputs in a closed-loop form. In fact, a traditional control system is no longer needed to track the obtained trajectory since the resulted DP table includes optimal control inputs for every state in the admissible region. The effect of different final states and alternative intervals of the allowable state and control values are also studied. Results from several simulations show that the proposed method enables the robot to find an optimal trajectory from any given state towards a predefined target. An experimental setup is designed wherein a real spherical robot is driven according to the developed algorithm. A vision system monitors the robot and outputs the location/orientation of the robot at each step via image processing. Experimental results are then compared with simulations to validate the model and evaluate the control strategy. (C) 2016 Elsevier Ltd. All rights reserved.
机译:研究了非完整球形移动机器人的最优运动规划与控制。动态编程(DP)作为一种直接的在线方法,用于在有/无障碍的环境中导航机器人。在环境中存在障碍物的情况下,确定与最小成本相对应的最佳轨迹,并且机器人可以最佳地向目标移动,而不会与障碍物碰撞。 DP以闭环形式产生最佳控制输入。实际上,不再需要传统的控制系统来跟踪获得的轨迹,因为生成的DP表包括允许区域中每个状态的最佳控制输入。还研究了不同的最终状态以及允许状态和控制值的替代间隔的影响。若干模拟的结果表明,所提出的方法使机器人能够找到从任何给定状态到预定目标的最佳轨迹。设计了一个实验装置,其中根据开发的算法来驱动真正的球形机器人。视觉系统监视机器人并在每个步骤通过图像处理输出机器人的位置/方向。然后将实验结果与仿真进行比较,以验证模型并评估控制策略。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号